1. Tính: 53 + (34 +4).2 + (27-3): 4
2. Chứng tỏ rằng 7n+4 - 7n chia hết cho 30, x \(\varepsilon\)\(ℕ\).
Ai giải nhanh nhất mình sẽ cho một like nha!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy: 3 n + 2 + 3 n = 3 n . 3 2 + 3 n
= 3 n 3 2 + 1 = 3 n . 10 chia hết cho 10
=> 3 n + 2 + 3 n chia hết cho 10, n ∈ N
b, 7 n + 4 - 7 n = 7 n . 7 4 - 7 n
7 n 7 4 - 1 = 7 n . 2400 chia hết cho 30
=> 7 n + 4 - 7 n chia hết cho 30, n ∈ N
Lời giải:
Vì $7^n$ không chia hết cho $3$ với mọi $n\in\mathbb{N}$ nên $7^n$ có dạng $3k+1$ hoặc $3k+2$ với $k\in\mathbb{N}$
Nếu $7^n=3k+1$ thì:
$(7^n+1)(7^n+2)=(3k+2)(3k+3)=3(3k+2)(k+1)\vdots 3(1)$
Nếu $7^n=3k+2$ thì:
$(7^n+1)(7^n+2)=(3k+3)(3k+4)=3(k+1)(3k+4)\vdots 3(2)$
Từ $(1);(2)$ suy ra $(7^n+1)(7^n+2)$ luôn chia hết cho $3$
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
\(7^{n+4}-7^n=7^n.7^4-7^n=7^n.\left(7^4-1\right)=7^n.2400\) chia hết cho 30
\(=125+\left(81+4\right).2+\left(27-3\right):4\)
\(=125+85.2+\left(27-3\right):4\)
\(=125+85.2+24:4\)
\(=125+170+24:4\)
\(=125+170+6\)
\(=295+6\)
\(=301\)