T=\(\sqrt{2x^2-2x+5}+\sqrt{2x^2-4x+4}>=13\)
ai giúp cho kick nè, love you, rất gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
Bài 1:
a, Sai đề
b, \(\sqrt{x^2-4x+4}=x-2\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=x-2\)
\(\Leftrightarrow\left|x-2\right|=x-2\)(*)
TH1: \(x\ge2\Rightarrow\left|x-2\right|=x-2\)
(*)\(\Leftrightarrow x-2=x-2\)
\(\Leftrightarrow0x=0\)\(\Rightarrow\)PT có vô số nghiệm
TH2: \(x< 2\Rightarrow\left|x-2\right|=2-x\)
(*)\(\Leftrightarrow2-x=x-2\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\)
Bài 2:
a, \(A=\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}\)
\(=2\sqrt{2}+2\sqrt{2}=4\sqrt{2}\)
b, \(B=\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}\)\(\left(x\ge\dfrac{5}{2}\right)\)
\(=\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}\)
\(=\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}\)
\(=\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|\)
\(=\sqrt{2x-5}+3+\sqrt{2x-5}-1\)
\(=2\sqrt{2x-5}+2\)
\(=2\left(\sqrt{2x-5}+1\right)\)
Sai thì nhớ báo nhé bạn.
Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:
\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)
\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)
Ta có:
\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)
\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)
Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)
a: \(2x^2-4x+5=2\left(x^2-2x+1+\dfrac{3}{2}\right)=2\left(x-1\right)^2+3>0\forall x\)
\(2x^2+4x+2=2\left(x+1\right)^2>=0\forall x\)
Do đó: Hai căn thức xác định với mọi x
b: \(\Leftrightarrow-4x+5>4x+2\)
=>-8x>-3
=>x<3/8
Tự nhiên trả lời làm cái gì
Đăng lên để hỏi
Chứ không phải trả lời nha o0o I am a studious person CTV
\(T=\frac{1}{\sqrt{2}}\left(\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\right)\)
\(T=\frac{1}{\sqrt{2}}\left(\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\right)\)
\(T\ge\frac{1}{\sqrt{2}}\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{13}\)
Hình như bạn ghi sai đề :)