Cho \(S=2.1+2.3+2.3^2+...+2.3^{2020}\). Tìm chữ số tận cùng của \(S\).
Mấy bạn giỏi Toán giúp mình với ạ. :<<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2004}\\ =2\left(1+3+3^2+...+3^{2004}\right)\\ =3\left(1+3+3^2+...+3^{2004}\right)-\left(1+3+3^2+...+3^{2004}\right)\\ =\left(3+3^2+3^3+...+3^{2005}\right)-\left(1+3+3^2+...+3^{2004}\right)\\ =3^{2005}-1\)
\(3\equiv3\left(\text{mod }10\right)\\ 3^4\equiv1\left(\text{mod }10\right)\\3^{2004}= 3^{4^{501}}\equiv1^{501}\equiv1\left(\text{mod }10\right)\\ 3^{2005}=3\cdot3^{2004}\equiv3\cdot1\equiv3\left(\text{mod }10\right)\\ 3^{2005}-1\equiv3-1\equiv2\left(\text{mod }10\right)\)
Vì S tận cùng là 2 nên nó k phải là số chính phương
Tìm chữ số tận cùng của:
A=125126+126125
B=20182019+20192018
C=1+4+42+...+499
D=2.1+2.3+2.32+...+2.32018
giúp mình với ạ, mình đag cần gấp, ai đúng mình tích. giải rõ ràng nha
\(S=9,8+8,7+7,6+...+2,1-1,2-2,3-3,4-...-8,9\)
\(=\left(9,8-8,9\right)+\left(8,7-7,8\right)+...+\left(2,1-1,2\right)\)
\(=0,9+0,9+...+0,9\)
\(=0,9\times8=7,2\)
=> 3A = 3 [ 1.2 + 2.3 + 3.4 + ... + (n-1).n ]
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +... + 1001.1002.3
=> 3A = 1.2.3 + 2.3 . ( 4-1 ) +3.4.( 5-2 ) + ... + 1001.1002 ( 1003-1000 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 1001.1002 .1003 - 1000.1001.1002
=> 3A = 1001.1002.1003
=> A = 1001 . 1002 . 1003 : 3
=> A = ?
1.
a)8102-2102
= 82 .8100 - 22. 2100
=64.(84)25-4.(24)25
=64 . ...625 - 4 . ...625
=....4 - ...4
.=...0 chia hết cho 10
b)34n+1+2
=(34)n+1 + 2
= ....1 + 2
=....3 chia hết cho 3
2.
a)C = 2.1+2.3+...+2.32004
C = 2.(1+3+...+32004)
đặt D=1+3+..+32004
3D=3+ .....+32005
3D - D=32005 - 3
2D=32005-1
2D= (34)501.3 - 1
2D = 81501 .3 - 1
D= (...1 . 3- 1):2
D = (...3 - 1) :2
D= ...2 : 2
D=....1
b)B= 1+ 3+...+3300
3B= 3+...+3101
2D = 3101 - 1
D= (3101 - 1):2
D=(3100.3-1):2
D=[(34)25. 3 -1]:2
D= [...125.3-1]:2
D= [...3-1]:2
D=...2:2
D=....1
a) S = 2.1 + 2.3 + 2.32 + ... + 2.32004
= 2.(1+3+32+...+32004)
= 2.\(\frac{3^{2005-1}}{2}\)
= 32005 - 1
b) Nhận thấy : 2005 = 4k + 1
Nên : 32005 = 34k + 1 = 34k.3 = ...1k . 3
Vì ...1k có tận cùng là 1 nên 32005 có tận cùng là 3
=> 32005 - 1 có tận cùng là 2
a) Ta có :
\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2004}\)
=> \(S=2.\left(1+3+3^2+...+3^{2004}\right)\)
Đăt \(1+3+3^2+...+3^{2004}\)là A, ta có :
\(3A=3+3^2+3^3+...+3^{2005}\)
=> \(3A-A=3^{2005}-1\)
=> \(A=\frac{3^{2005}-1}{2}\)
Vậy \(A=\frac{3^{2005}-1}{2}\)
=> 2.A = 2 . \(\frac{3^{2005}-1}{2}\)=\(3^{2005}-1\)
b) Ta có : 32005 = (34)501 . 3
= 81501 . 3 = ...1 . 3 = ...3
32005 - 1 = ....3 - 1 = ....2
Vì chữ số tận cùng của S là 2 nên S ko phải là số chính phương.
\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2020}\)
\(S=2\left(1+3+3^2+...+3^{2020}\right)\)
Đặt \(A=1+3+3^2+...+3^{2020}\)
\(\Rightarrow3A=3\left(1+3+3^2+...+3^{2020}\right)\)
\(3A=3+3^2+3^3+...+3^{2021}\)
\(2A=3A-A\)
\(2A=3+3^2+3^3+...+3^{2021}-\left(1+3+3^2+3^3+...+3^{2020}\right)\)
\(2A=3+3^2+3^3+...+3^{2021}-1-3-3^2-3^3-...-3^{2020}\)
\(2A=3^{2021}-1\)
\(\Rightarrow A=\frac{3^{2021}-1}{2}\)
Thế vào S ta được :
\(S=2\cdot\frac{3^{2021}-1}{2}=3^{2021}-1\)
Đến đây em chịu xD Nhờ các cao nhân giải tiếp ạ ;-;
Giải tiếp phần của bạn Quỳnh nhé!
Xét dãy chữ số tận cùng của \(3^{2021}\) : \(3;9;7;1;3;9;7;1;...\)
Cứ 4 số thành một nhóm và lập lại như vậy. Có \(2021\div4=505\) ( dư 1 )
Vì dư 1 nên số thứ nhất trong nhóm dãy chữ số tận cùng là số tận cùng của S + 1.
Vậy chữ số tận cùng của S là 3 - 1 = 2.