K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Giúp với mn ơi!!

18 tháng 8 2020

\(3^{2019}+4^{2019}\)\(=\left(3^3\right)^{673}+\left(4^3\right)^{673}\)\(⋮3^3+4^3=91⋮13\)

Vậy: \(3^{2019}+4^{2019}⋮13\)

27 tháng 11 2019

A = 3 + 32 + 33 + 34 + 35+ .... + 32018 + 32019

   =  3 + (32 + 33 + 34 + 35+ .... + 32018 + 32019)

   = 3 + [(32 + 33) + (34 + 35) + ... + (32018 + 32019)]

   = 3 + [(32 + 33) + 32.(32 + 33) + ... + 32016.(32 + 33)]

   = 3 + (36 + 32.36 + ... + 32016.36)

   = 3 + 36.(1 + 32 + .... + 32016)

   = 3 + 4.9.(1 + 32 + .... + 32016)

Vì  4.9.(1 + 32 + .... + 32016\(⋮\)4

=> 4.9.(1 + 32 + .... + 32016) + 3 : 4 dư 3

=> A : 4 dư 3

Vậy số dư khi A chia 4 là 3

27 tháng 11 2019

theo bài ra ta có:

  A=3^1+3^2+3^3+3^4 .... +3^2018+3^2019

3A=3.(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)

3A=3^2+3^3+3^4 .... +3^2018+3^2020

3A-A=(3^2+3^3+3^4 .... +3^2018+3^2020)

        -(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)

2A= 3^2020-3^1

=>2A=(...1)-(...3)

=>A=(...8)

...........

6 tháng 3 2019

Dễ thấy tổng 2 số lẻ liên tiếp thì chia hết cho 4

cm:(2k+1)+(2k+3) =4k+4 chia hết cho 4

Quy đồng biểu thức và rút gọn ta có:

\(A=3.5.....2017.2019+1.5...2017.2019+1.3.7...2017.2019+...+1.3.5....2019\)+\(+1.3.5...2017\)

Tổng trên có 1010 số hạng 

=>  chia thành 505 nhóm như sAU

\(A=\left(3.5....2017.2019+1.5...2017.2019\right)+...+\left(1.3.5...2015.2019+1.3.5...20152017\right)\)

Đặt nhân tử chung ra ngoài bên trong còn tổng 2 số tự nhiên lẻ liên tiếp 

\(A=5.7....2017.2019.\left(3+1\right)+...+1.3.5...2015.\left(2017+2019\right)\)chia hết cho 4

=> A chia cho 4 dư 0

30 tháng 7 2023

\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\\ \left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\\ \left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\\ 57\left(1+7^3+7^6+...+7^{2018}\right)⋮57\)

30 tháng 7 2023

A=1+7+72+...+72019+72020

=1+(7+72+73)+(74+75+76)+...+(72018+72019+72020)

=1+7(1+7+72)+74(1+7+72)+...+72018(1+7+72)

=1+7x57+74x57+...+72018x57=1+57(7+74+...+72018)

=>A chia cho 57 dư 1.vì 57(7+74+...+72018)⋮57.

6 tháng 1 2019

Hình như đề bị sai thì phải, đãng lẽ ra là tìm số dư của 32019: 13 chứ nếu như bạn viết thì số dư là 13 rồi

kiến thức

hay dấu hiệu chia hết cho 7

là xong thui bạn

9 tháng 2 2020

e hèm ddm t đang định tìm câu này lại gặp m thg chos

27 tháng 12 2021

1 nha

27 tháng 12 2021

mik tưởng 5