C1:Chứng minh : \(\frac{91}{1.4}+\frac{91}{4.7}+\frac{91}{7.10}+.....+\frac{91}{88.91}=30\)
C2:Cho n là số tự nhiên có 2 chữ số .Tìm n biết n+4 và 2n đều là các số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{9}{7.10}+...+\frac{91}{88.91}\)
= \(\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{88.91}\right)\)
= \(\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{88}-\frac{1}{91}\right)\)
= \(\frac{91}{3}.\frac{90}{91}=30\) (đfcm)
\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{91}{7.10}+...+\frac{91}{88.91}\)
\(=91.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{88.91}\right)\)
\(=91.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{88}-\frac{1}{91}\right)\)
\(=91.\left(\frac{1}{1}-\frac{1}{91}\right)\)
\(=91.\frac{90}{91}=\frac{91.90}{91}\)
\(=90\)
\(VT=91\left(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{88\cdot91}\right)\)
\(=\dfrac{91}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{88\cdot91}\right)\)
\(=\dfrac{91}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{88}-\dfrac{1}{91}\right)\)
\(=\dfrac{91}{3}\cdot\dfrac{90}{91}=30\)
\(\frac{1}{1.3}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{2018}{6057}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\right)=\frac{2018}{6057}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}=\frac{2018}{6057}.3\)
\(\Rightarrow1-\frac{1}{n+3}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{n+3}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{n+3}=\frac{1}{2019}\)
\(\Rightarrow n+3=2019\)
\(\Rightarrow n=2016\)
Vậy n = 2016
#)Giải :
\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{91}{7.11}+...+\frac{91}{88.91}\)
\(=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{88.91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{88}-\frac{1}{91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{91}\right)\)
\(=\frac{91}{3}.\frac{90}{91}=30\left(đpcm\right)\)
#~Will~be~Pens~#
\(\frac{91}{1\cdot4}+\frac{91}{4\cdot7}+...+\frac{91}{88\cdot91}=\frac{1}{3}\left(91-\frac{91}{4}+\frac{91}{4}-\frac{91}{7}+...-\frac{91}{91}\right)\)
\(=\frac{1}{3}\left(91-1\right)=\frac{1}{3}\cdot90=30\)
Bài 1:
a) \(\Rightarrow XY=4.21=84\)
Rồi tìm các cặp số thỏa mãn đi. Cả âm dương nhé.
b) \(\Rightarrow91Z=49.52=2548\)
\(\Rightarrow Z=2548:91=28\)
Bài 2: (Dạng này mới xem áp dụng luôn)
Gọi \(d\)là ước chung của \(n;n+1\)
\(\Rightarrow n⋮d\)và \(n+1⋮d\)
\(\Rightarrow n-\left(n+1\right)⋮d\)
\(\Rightarrow n-n-1⋮d\)
\(\Rightarrow-1⋮d\Rightarrow d=1;-1\)
Tử và số chỉ có ước chung là 1;-1 nên phân số \(\frac{n}{n+1}\)tối giản (đpcm)
a) \(\frac{91}{1.4}+\frac{91}{4.7}+...+\frac{91}{88.91}=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{88.91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{88}-\frac{1}{91}\right)=\frac{91}{3}\left(1-\frac{1}{91}\right)=\frac{91}{3}.\frac{90}{91}=30\left(\text{đpcm}\right)\)