Chứng minh : x^2 - x + 1 > 0
Giúp mình với đúng mình tick cho
Thứ 2 mình phải nộp rồi !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2+1)(x-1)(x+3)>0
Vì x^2+1>0 với mọi x
nên: (x-1)(x+3)>0
Trường hợp 1:
x-1<0, x+3 <0
Vì x+3 > x-1 nên x+3<0 suy ra x<-3
Trường hợp 2:
x-1>0, x+3>0
Vì x-1<x+3 nên x-1 >0 suy ra x>1
Vậy x<-3 hoặc x>1
Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương
TH1: Có 2 số âm, 1 số dương
Trước hết ta có \(x+3>x-1\)
\(x^2+1>x-1\)
Vì vậy \(x-1< 0\)
\(x^2+1>0\) nên \(x+3< 0\)
\(\Rightarrow x< -3\left(< 1\right)\)
TH2: Cả 3 số đều dương
Xét số bé nhất lớn hơn 0:
\(x-1>0\Rightarrow x>1\)
Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)
ez
Xét \((a^2+b^2+c^2)-\left(a+b+c\right)\)
\(=\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)\)
Ta có \(\left(a^2-a\right)=\left(a-1\right)a⋮2\)(vì tích hai số nguyên liên tiếp)
\(\Rightarrow\left(a^2-a\right)⋮2\)
Chứng minh tương tự ta có :
\(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2\)
\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)⋮2\)
\(\Rightarrow\left(a^2+b^2+c^2\right)-\left(a+b+c\right)⋮2\)
Vì \(a^2+b^2+c^2⋮2\Rightarrow a+b+c⋮2\)
a+b+c=(a2+b2+c2)-(a+b+c)
Ta có: (a2-a)=a.(a-1) chia hết 2
(b2-b)=b.(b-1) chia hết 2
(c2-c)=c.(c-1) chia hết 2
mà a+b+c=(a2+b2+c2)-(a+b+c)
=(a2-a)(b2-b)(c2-c)
=> a+b+c chia hết 2.
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+...+\dfrac{1}{x}=\dfrac{127}{256}\)
Đặt VT là A
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{2}{x}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{2}{x}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{x}\right)=\dfrac{127}{256}\)
\(\Leftrightarrow A=1-\dfrac{1}{x}=\dfrac{127}{256}\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{129}{256}\)
\(\Rightarrow x=\dfrac{256}{129}\)
=(1-2)-(3-4)+(5-6)-(7-8)+...+(2021-2022)-2023
=(-1)-(-1)+(-1)-...+(-1)-2023
=0-2023
=-2023
1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))
Bài làm:
Ta có: \(x^2-x+1\)
\(=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
Bg
Ta có: x2 - x + 1 (x \(\inℝ\))
= (x - 1).x + 1
Với x < 0:
=> (x - 1).x > 0
=> (x - 1).x + 1 > 0
=> x2 - x + 1 > 0
=> ĐPCM
Với x = 0:
=> x2 - x + 1 = 02 - 0 + 1 = 1 > 0
=> ĐPCM
Với x > 0
=> (x - 1).x > 0
=> (x - 1).x + 1 > 0
=> x2 - x + 1 > 0
=> ĐPCM
Vậy x2 - x + 1 luôn > 0 với mọi x \(\inℝ\)