A=1/2 +1/4+1/8+1/16+1/64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính không quy đồng mẫu:
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{32}-\frac{1}{64}\)
\(A=1-\frac{1}{64}=\frac{63}{64}\)
A = 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64
A = 1 - 1/64
A = 63/64
A = 1/2 + 1/4 +1/8+ 1/16 +1/32 +1/64
A = 1- 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64
A = 1 - 1/64
A = 63/64
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(\dfrac{4}{2}A=\dfrac{4}{2}\cdot\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\right)\)
\(A=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+..\left(\dfrac{1}{32}-\dfrac{1}{32}\right)+\left(1-\dfrac{1}{64}\right)\)
\(A=1-\dfrac{1}{64}\)
\(A=\dfrac{63}{64}\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\) + \(\dfrac{1}{256}\)
2A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)
2A - A = 1 - \(\dfrac{1}{256}\)
A = \(\dfrac{255}{256}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(A=\frac{32+16+8+4+2+1}{64}\)
\(A=\frac{63}{64}\)
Chúc bạn học tốt và tíck cho mìk vs nha!
cach 1
A=1/2+1/4+1/8+1/16+1/32+1/64
ta thấy:1/2=1-1/2; 1/4 = 1/2 - 1/4;... ;1/64 = 1/32 - 1/64
A = 1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64
A=1-1/64
A=63/64
cách 2
A=1/2+1/4+1/8+1/16+1/32+1/64
A x 2=1+1/2+1/4+1/8+1/16+1/32
A x 2 - A= (1+1/2+1/4+1/8+1/16+1/32)-(1/2+1/4+1/8+1/16+1/32+1/64)
A x 2 = 1-1/64
A x 2 =63/64
A =63/64 : 2
A = 63/128
2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32
2A - A = (1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32) - (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64)
A = 1 - 1/64
A = 63/64
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)
\(A=1-\frac{1}{64}=\frac{63}{64}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Rightarrow2A=\frac{2}{2}+\frac{2}{4}+\frac{2}{8}+\frac{2}{16}+\frac{2}{32}+\frac{2}{64}+\frac{2}{128}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)
\(\Rightarrow A=1-\frac{1}{128}=\frac{128}{128}-\frac{1}{128}=\frac{127}{128}\)
a: 4A=4+4^2+...+4^9
=>3A=4^9-1
=>A=(4^9-1)/3
b: 2A=1+1/2+...+1/2^7
=>A=1-1/256=255/256
c: =1-1/5+1/5-1/9+...+1/85-1/89
=1-1/89=88/89
d: =1/3(3/1*4+3/4*7+...+3/304*307)
=1/3(1-1/4+1/4-1/7+...+1/304-1/307)
=1/3*306/307=102/307
e: E=1-1/2+1/2-1/3+...+1/11-1/12
=1-1/12=11/12
g: =2/5(1-1/6+1/6-1/11+...+1/96-1/101)
=2/5*100/101=40/101
=> \(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{32}\)
=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{64}\right)\)
=> \(A=1+\frac{1}{32}-\frac{1}{16}-\frac{1}{64}=\frac{61}{64}\)
A = 1/2 + 1/4 + 1/8 + 1/16 + 1/64 = 32/64 + 16/64 + 8/64 + 4/64 + 1/64 = 61/64.