K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

vẽ hình giùm mình luôn nha

1. Gọi I chính là giao điểm của BD và AC. Ta có: AB = BC = DC = AD = AH + BH = 7+2 = 9(cm)

Xét\(\Delta AHD\left(\widehat{AHD}=90^0\right)\) theo định lý py - ta - go ta có : 

\(HD=\sqrt{AD^2-AH^2}=\sqrt{9^2-7^2}=4\sqrt{2}cm\)

Xét\(\Delta BHD\left(\widehat{BHD=90^O}\right)\)theo định lý py - ta - go ta có : 

\(BD=\sqrt{HD^2+BH^2}=\sqrt{\left(4\sqrt{2}\right)^2+2^2}=6cm\)

BI = DI =\(\frac{BD}{2}=\frac{6}{2}=3cm\). Xét\(\Delta AID\left(\widehat{AID}=90^O\right)\)theo định lý py - ta - go ta có : 

\(AI=\sqrt{AD^2-DI^2}=\sqrt{9^2-3^2}=6\sqrt{2cm}\)

AC = AI.2 =\(6\sqrt{2}.2=12\sqrt{2}\)=> SABCD =\(\frac{1}{2}.\left(BD.AC\right)=\frac{1}{2}.\left(6.12\sqrt{2}\right)=36\sqrt{2}cm\)

27 tháng 12 2019

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Xét tam giác vuông AHB, ta có :

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

5 tháng 2 2021

Mày N Mày Chết M Mày Đi Kêu Cặk

18 tháng 9 2019

A B C D M H 1 2 4

a ) Ta có : \(AB=AD=\frac{CD}{2}\)    và M là trung điểm của CD (gt)

\(\Leftrightarrow AB=DM\) và AB // DM 

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của \(\Delta BDC\) mà MB = MD = MC.

Do đó \(\Delta BDC\) là tam giác vuông tại B hay \(DB\perp BC\)

c) ABMD là hình thoi (cmt)  \(\Leftrightarrow\widehat{D}_1=\widehat{D}_2\) 

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

\(HB=HD=\frac{1}{2}BD=\frac{1}{2}.4=2\left(cm\right)\)

Xét tam giác vuông AHB, ta có :

\(AH=\sqrt{AB^2-HB^2}\) ( định lí Pitago )

          \(=\sqrt{2,5^2-2^2}=1,5\left(cm\right)\)

\(\Rightarrow AM=3\left(cm\right)\)

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

\(\Rightarrow BC=AM=3\left(cm\right)\)

Ta có :

\(S_{BDC}=\frac{1}{2}BD.BC=\frac{1}{2}.4.3=6\left(cm^2\right)\)

M là trung điểm của DC nên

\(S_{BMD}=S_{BMC}=\frac{S_{BCD}}{2}=3\left(cm^2\right)\) 

(chung đường cao kẻ từ B và MD = MC)

Mặt khác \(\Delta ABD=\Delta MDB\) ( ABCD là hình thoi )

\(\Leftrightarrow S_{ABD}=S_{BMD}=3\left(cm^2\right)\)

Vậy \(S_{ABCD}=S_{ABD}+S_{BMD}+S_{BMC}=9\left(cm^2\right)\)

Chúc bạn học tốt !!!

5 tháng 2 2021

Buồi

30 tháng 5 2019

TL:

a)AB//DM
AB=DM(cùng bằng 1/2 CD)
=>ABMD là hbh
=>AD=BM 
=>AB=BM=MD=DA=>ABMD là hình thoi
b)tam giác CBM cân tại M => góc C= góc CBM
tam giác MBD cân tại M => góc B= góc BDM
=>góc DBC = góc C + góc BDC = 90*
c)ABMD là hình thoi => AM vuông góc với BD => góc H = 90*
tam giác ADH và tam giác CDB có :
góc H = góc B =90*
góc ADB = BDM
=> tam giác ADH ~ tam giác CBD(g-g)
d)AB=2.5=>CD=5
Áp dụng định lí Pitago vào tam giác vuông BCD 
ta tính đc BC = 3cm
Diên tích tam giác BDC = 3*4/2=6cm2
Diện tích tam giác ABD = 1.5 * 4/2 = 3cm2
=> Diện tích hình thang ABCD = 9cm2

~ t.i.c.k nha ~

30 tháng 5 2019

Bạn tham khảo bài này nhé : https://h.vn/hoi-dap/question/619973.html

~Study well~

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . a) Tính diện hình vuông ABCDb) Tính diện tích hình AECPc) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt nhau...
Đọc tiếp

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .

Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . 

a) Tính diện hình vuông ABCD

b) Tính diện tích hình AECP

c) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt nhau tại I . So sánh diện tích tam giác IPM với diện tích tam giác IDN

Bài 3 : Cho hình thang ABCD có đáy AB bằng 2/3 đáy CD . Trên cạnh BC lấy một điểm E sao cho đoạn BE bằng 2/5 đoạn CE . Biết diện tích tam giác AED là 32 cm2 . Tính diện tích hình thang ABCD .

Bài 4 : Cho tam giác vuông ABC có góc vuông tại A . Cạnh AB dài 3 cm ,  cạnh AC dài 4 cm , cạnh BC dài 5 cm . Trên cạnh AB lấy điểm  M sao cho AM bằng 2 cm , trên cạnh AC lấy điểm N sao cho AN bằng 1 cm , trên cạnh BC lấy điểm E sao cho BE bằng 2,5 cm . Tính diện tích tam giác MNE

 

14
15 tháng 5 2016

bài 1: ta có;CE là trung tuyến của tam giác ABC =>KE=1/3 CE=1/3 x21=7(cm)

CK=2/3 CE=2/3x21=14(cm0

15 tháng 5 2016

5 người đầu tiên mình sẽ được mình tích

9 tháng 7 2020

Mọi người giúp mình với.