5và \(\frac{3}{4}\). x = 8 và \(\frac{2}{5}\)
(2 hỗn số, dấu chấm là nhân nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}.\)
\(b,\left[x\cdot\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}:\frac{9}{4}\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}\cdot\frac{4}{9}\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{14}{9}\)
\(\Leftrightarrow x\cdot\frac{5}{3}-1=\frac{14}{9}\cdot9\)
\(\Leftrightarrow x\cdot\frac{5}{3}-1=14\)
\(\Leftrightarrow x\cdot\frac{5}{3}=14+1\)
\(\Leftrightarrow x\cdot\frac{5}{3}=15\)
\(\Leftrightarrow x=15:\frac{5}{3}\)
\(\Leftrightarrow x=15\cdot\frac{3}{5}\)
\(\Leftrightarrow x=9.\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\frac{1}{1}-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
b)\(\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)
\(\Leftrightarrow\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:\frac{9}{4}=1\frac{5}{9}\)
\(\Rightarrow x.\frac{5}{3}-1=1\frac{5}{9}.9=14\)
\(\Rightarrow x.\frac{5}{3}=14+1=15\)
\(\Rightarrow x=15:\frac{5}{3}=9\)
Đề còn thiếu 1 điều kiện nữa là \(n>0\)
Đặt \(A=\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}\) ta có :
\(A=\frac{4}{5}\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\right)\)
Để \(A< 0,8\) thì \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1\)
Đặt \(B=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\) ta có :
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}+\frac{1}{n}\)
\(B< 1-\frac{1}{n}< 1\)
\(\Rightarrow\)\(B< 1\) ( đpcm )
Suy ra : \(A=\frac{4}{5}.B=0,8.B< 0,8\) ( vì \(B< 1\) )
Vậy \(\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}< 0,8\)
Chúc bạn học tốt ~
\(\frac{1}{3}+x\times\frac{2}{7}=\frac{11}{12}\)
\(x\times\frac{2}{7}=\frac{11}{12}-\frac{1}{3}\)
\(x\times\frac{2}{7}=\frac{7}{12}\)
\(x=\frac{7}{12}:\frac{2}{7}\)
\(x=\frac{49}{24}\)
~Moon~
\(\frac{1}{3}+x.\frac{2}{7}=\frac{11}{12}\)
\(x.\frac{2}{7}=\frac{11}{12}-\frac{1}{3}\)
\(x.\frac{2}{7}=\frac{7}{12}\)
\(x=\frac{7}{12}\div\frac{2}{7}\)
\(x=\frac{49}{24}\)
Ta có : \(5\cdot\left(\frac{1}{5}+\frac{1}{17}\right)-\left(\frac{2}{5}+\frac{2}{17}+\frac{9}{15}+\frac{12}{68}\right)\)
\(=\) \(5\cdot\frac{1}{5}+5\cdot\frac{1}{17}-\left(\frac{2}{5}+\frac{2}{17}+\frac{3}{5}+\frac{3}{17}\right)\)
\(=\) \(1+\frac{5}{17}-\left[\left(\frac{2}{5}+\frac{3}{5}\right)+\left(\frac{2}{17}+\frac{3}{17}\right)\right]\)
\(=\) \(1+\frac{5}{17}-\left(1+\frac{5}{17}\right)\)
\(=\) \(1+\frac{5}{17}-1-\frac{5}{17}\)
\(=\)\(0\)
Vậy ...
Tk ủng hộ mk nha các bn ❣❣ C.ơn nhiều ^^
\(1\frac{1}{3}+1\frac{1}{5}.y-\frac{4}{5}=2\frac{4}{5}\)
\(\Rightarrow\frac{4}{3}+\frac{6}{5}.y=2\frac{4}{5}+\frac{4}{5}\)
\(\Rightarrow\frac{4}{3}+\frac{6}{5}.y=2\frac{8}{5}=\frac{18}{5}\)
\(\Rightarrow\frac{6}{5}y=\frac{18}{5}-\frac{4}{3}\)
\(\Rightarrow\frac{6}{5}y=\frac{34}{15}\)
\(\Rightarrow y=\frac{34}{15}:\frac{6}{5}\)
\(\Rightarrow y=\frac{34}{15}.\frac{5}{6}=\frac{17}{9}\)
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
\(5\frac{3}{4}\times x=8\frac{2}{5}\)
\(\frac{23}{4}\times x=\frac{42}{5}\)
\(x=\frac{42}{5}\div\frac{23}{4}\)
\(x=\frac{168}{115}\)
\(5\frac{3}{4}.x=8\frac{2}{5}\)
\(\frac{23}{4}.x=\frac{42}{5}\)
\(x=\frac{42}{5}:\frac{23}{4}\)
\(x=\frac{168}{115}\)
vậy \(x=\frac{168}{115}\)