Tim x để biểu thức A = | x – 3| + | x + 7| + | x + 1| đạt giá trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(A=\left|3-x\right|+\left|x+7\right|+\left|x+1\right|\)
\(A\ge\left|3-x+x+7\right|+\left|x+1\right|=10+\left|x+1\right|\ge10\)
\(A_{min}=10\) khi \(\left\{{}\begin{matrix}\left(3-x\right)\left(x+7\right)\ge0\\\left|x+1\right|=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
+) Ta có: A = l x - 3 l + l x + 7 l + l x + 1 l
=> A = l 3 - x l + l x + 7 l + l x + 1 l
=> A = ( l 3 - x l + l x + 1 l ) + l x + 7 l
=> A \(\ge\)l 3 - x + x + 1 l + l x + 7 l
=> A \(\ge\)4 + l x + 7 l
+)Ta thấy: l x + 7 l \(\ge\)0 với mọi x \(\in\)R
Dấu ''='' xảy ra là GTNN của A đạt được \(\Leftrightarrow\)A = 4
\(\Leftrightarrow\)l x + 7 l = 0
\(\Leftrightarrow\) x + 7 = 0
\(\Leftrightarrow\)x = -7
Vậy MinA= 4 \(\Leftrightarrow\)x = -7
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
1. a, => -12x+60+21-7x = 5
=> 81 - 19x = 5
=> 19x = 81 - 5 = 76
=> x = 76 : 19 = 4
Tk mk nha
A = |x - 3| + |x + 7| + |x + 1|
A = (|3 - x| + |x + 7|) + |x + 1|
Ta có: |3 - x| + |x + 7| \(\ge\)|3 - x + x + 7| = 10
Dấu "=" xảy ra <=> (3 - x)(x + 7) \(\ge\)0
=> -7 \(\le\)x \(\le\)3 (1)
Ta lại có: |x + 1| \(\ge\)0
Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1 (2)
Từ (1) và (2) => x = -1
Vậy MinA = 10 + 0 = 10 khi x = -1