Tìm a,b,c biết : 2^a+3^c= 3b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/2=b/3=c/4=k
=>a=2k; b=3k; c=4k
Ta có: \(a^2+3b^2-2c^2=-16\)
\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)
\(\Leftrightarrow k^2=16\)
Trường hợp 1: k=4
=>a=8; b=12; c=16
Trường hợp 2: k=-4
=>a=-8; b=-12; c=-16
Lời giải:
Ta thấy:
$(-2a^2b^3)^2\geq 0$ với mọi $a,b$
$(3b^2c^4)^5=3^5(b^5c^{10})^2\geq 0$ với mọi $b,c$
Do đó để tổng của chúng bằng $0$ thì:
$-2a^2b^3=b^5c^{10}=0$
$\Rightarrow ab=bc=0$
$\Rightarrow$ (a,b,c)=(a,0,c), (0,b,0)$
a) Tìm x
\(6-\left(x-\frac{1}{3}\right)^2=\frac{2^{2013}}{\left(-2\right)^{2012}}\Rightarrow6-\left(x-\frac{1}{3}\right)^2=\frac{2^{2013}}{2^{2012}}=2^1=2\)
\(\Rightarrow\left(x-\frac{1}{3}\right)^2=6-2=4=2^2\Rightarrow\hept{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{3}\\x=\frac{-5}{3}\end{cases}}}\)
Vậy \(x\in\left\{\frac{7}{3};\frac{-5}{3}\right\}\)
b) Ta có : \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\) và \(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\\\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\end{cases}}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{a+b-c}{21+14-10}=-\frac{50}{25}=-2\)
\(\Rightarrow a=\left(-2\right).21=-42\) \(b=\left(-2\right).14=-28\) \(c=\left(-2\right).5=-10\)
Vậy a = -42 ; b = -28 và c = -10
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Tìm 3 số a,b,c biết a phần 2 =b phần 5 =c phần 6 và a+3b-5c=-26
Giải:Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{6}=\frac{3b}{15}=\frac{5c}{30}=\frac{a+3b-5c}{2+15-30}=\frac{-26}{-13}=2\)
\(\Rightarrow\hept{\begin{cases}a=2.2=4\\b=2.5=10\\c=2.6=12\end{cases}}\)
Vậy a=4,b=10,c=12 thỏa mãn bài toán
Ta có:
\({a \over 2} = {b \over 5}= {c \over 6}\)\(\Rightarrow\)\({ a\over 2} = { 3b\over 15}= { 5c\over 30}\)\(\Leftrightarrow\)\({ a+3b- 5c\over 2+15-30} \)=\( {-26 \over -13}\) =2 tự lm tiếp nhé!
giúp mik với
dễ mà :v