Tìm GTLN
A = -2x² + 0,5x - 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(A=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\)
\(maxA=19\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
a)Ta có:
\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)
\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)
Vậy MaxA=-3 khi x=1
b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2
a: \(B=1-\sqrt{\left(x-1\right)^2+1}\)
(x-1)^2+1>=1
=>\(\sqrt{\left(x-1\right)^2+1}>=1\)
=>\(B< =0\)
Dấu = xảy ra khi x=1
b:
ĐKXĐ: -(x+2)^2+2>=0
=>-(x+2)^2>=2
=>(x+2)^2<=2
=>\(-\sqrt{2}-2< =x< =\sqrt{2}-2\)
\(-x^2+4x-2=-\left(x^2-4x+2\right)\)
\(=-\left(x^2-4x+4-2\right)=-\left(x-2\right)^2+2< =2\)
=>\(0< =\sqrt{4x-x^2-2}< =\sqrt{2}\)
=>1<=C<=căn 2+1
\(C_{max}=\sqrt{2}+1\Leftrightarrow x=2\)
GTTD cua mot so luon luon lon hon hoac bang 0
a)=>|4-0,5x|=0
=>A=-17 ( de A dat GTLN)
b) =>2|1/2.x-8|=0
=>x=16=>B=5 (de B dat GTLN)
c) de j the ?
đổi ảnh đại diện điiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ròi tau làm choooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
\(A=4-6x-x^2=-\left(x^2+6x-4\right)=-\left(x^2+6x+9-13\right)\)
\(=-\left[\left(x+3\right)^2-13\right]=-\left(x+3\right)^2+13\le13\)
Vậy \(A_{max}=13\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(B=3x^2-6x+1=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+3-2\)
\(=\left(\sqrt{3}x-\sqrt{3}\right)^2-2\ge-2\)
Vậy \(B_{min}=-2\Leftrightarrow\sqrt{3}x-\sqrt{3}=0\Leftrightarrow x=1\)
\(C=5x^2-2x-3=\left(\sqrt{5}x\right)^2-2.\sqrt{5}x.\frac{1}{\sqrt{5}}+\frac{1}{5}-\frac{16}{5}\)
\(=\left(\sqrt{5}x-\frac{1}{\sqrt{5}}\right)^2-\frac{16}{5}\ge-\frac{16}{5}\)
Vậy \(C_{min}=-\frac{16}{5}\Leftrightarrow\sqrt{5}x-\frac{1}{\sqrt{5}}=0\Leftrightarrow\sqrt{5}x=\frac{1}{\sqrt{5}}\Leftrightarrow x=\frac{1}{5}\)
\(-A=2x^2-0,5x+8\)
=> \(-2A=4x^2-x+16\)
=> \(-2A=\left(2x-\frac{1}{4}\right)^2+\frac{255}{16}\)
Có: \(\left(2x-\frac{1}{4}\right)^2\ge0\)
=> \(-2A\ge\frac{255}{16}\)
=> \(A\le-\frac{255}{16}:2\)
=> \(A\le-\frac{255}{32}\)
DẤU "=" XẢY RA <=> \(\left(2x-\frac{1}{4}\right)^2=0\)
<=> \(x=\frac{1}{8}\)