chứng tỏ rằng A=(x^2+1)(3x-4)-3x^2(x-1)+x(x-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)
Vậy ....
`A=4(x-6)-x^2(3x+2)+x(5x-4)+3x^2(x-1)`
`=4x-24-3x^3-2x^2+5x^2-4x+3x^3-3x^2`
`=-24` không phụ thuộc vào biến
c = 2 (3x - 1 ) - 3 (2x- 3 )
= 6x - 2 - 6x + 9
= 7
VẬy GT của C không phụ thuộc vào biến
Bài 1
A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2
Bài 1:
a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)
\(A=2x^2-x-4x+2-2x^2-6x\)
\(A=-11x+2\)
b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)
\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)
\(B=-12x\)
c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)
\(C=12x^2+18x-12x^2+8x+3x-2\)
\(C=29x-2\)
d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)
\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)
\(D=36x-10\)
1)
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
=>đpcm
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2=-24\)
=>đpcm
2,
a) \(5x\left(12x+7\right)-3x\left(20x-5\right)=-100\)
\(\Leftrightarrow60x^2+35x-60x^2+15x=-100\)
\(\Leftrightarrow50x=-100\)
\(\Leftrightarrow x=-2\)
b) \(0,6x\left(x-0,5\right)-0,3x\left(2x+1,3\right)=0,138\)
\(\Leftrightarrow0,6x^2-0,3x-0,6x^2-0,39x=0,138\)
\(\Leftrightarrow-0,69x=0,138\)
\(\Leftrightarrow x=-0,2\)
Câu 1:
a)\(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^2-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^2-x+3\)
\(=x^3+3\)(ko thể CM)
b)\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)(đpcm)
cộng H(x)với G(x)
H(x)+G(x)=(x^3-2x^2+3x-1)+(-x^3+3x^2-3x+3)
=x^3-2x^2+3x-1-x^3+3x^2-3x+3
=x^2+2
mà x^2 lớn hơn hoặc bằng 0
nên x^2+2 lớn hơn 0
suy ra đa thức H(x) và G(x) không có nghiệm chung nào
\(A=3x^3-4x^2+3x-4-3x^3+3x^2+x^2-3x\)
\(=-4\)