Giải phương trình:\(\left(x-1\right)^3+\left(x+2\right)^3=\left(2x+1\right)^3\)\(^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x=2x^3-16\)
<=>\(8x=-16\)
<=>\(x=-2\)
i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)
<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(6x^2-2x-10=0\)
<=>\(3x^2-x-5=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>\(x=\dfrac{1}{5}\)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)
<=>\(8x=-16\)
<=>x=-2
i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(9x+6=0\)
<=>x=\(\dfrac{-2}{3}\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>x=\(\dfrac{1}{5}\)
(x+1)3+(x−2)3=(2x−1)3⇔x3+3x2+3x+1+x3−6x2+12x−8=8x3−12x2+6x−1⇔2x3−3x2+15x−7−8x3+12x2−6x+1=0(x+1)3+(x−2)3=(2x−1)3⇔x3+3x2+3x+1+x3−6x2+12x−8=8x3−12x2+6x−1⇔2x3−3x2+15x−7−8x3+12x2−6x+1=0⇔−6x
Đặt x+1=a; x-2=b
Phương trình trở thành:
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow x\in\left\{-1;2;\dfrac{1}{2}\right\}\)
a: =>|x-7|=3-2x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)
b: =>|2x-3|=4x+9
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)
c: =>3x+5=2-5x hoặc 3x+5=5x-2
=>8x=-3 hoặc -2x=-7
=>x=-3/8 hoặc x=7/2
a:
ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)
\(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)
=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)
=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)
b:
ĐKXĐ: x<>-3
\(y=\left(x+3\right)+\dfrac{4}{x+3}\)
=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)
\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)
=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)
y'=0
=>\(\left(x+3\right)^2-4=0\)
=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)
=>(x+5)(x+1)=0
=>x=-5 hoặc x=-1
c:
ĐKXĐ: x<>-2
\(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)
=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)
=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)
\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)
d:
ĐKXĐ: x<>2
\(y=x-2+\dfrac{9}{x-2}\)
=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)
\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)
=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)
y'=0
=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)
=>\(\left(x-2\right)^2-9=0\)
=>(x-2-3)(x-2+3)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
\(\dfrac{2x-1}{x+1}-2< 0.\left(x\ne-1\right).\\ \Leftrightarrow\dfrac{2x-1-2x-2}{x+1}< 0.\Leftrightarrow\dfrac{-3}{x+1}< 0.\)
Mà \(-3< 0.\)
\(\Rightarrow x+1>0.\Leftrightarrow x>-1\left(TMĐK\right).\)
\(\dfrac{x^2-2x+5}{x-2}-x+1\ge0.\left(x\ne2\right).\\ \Leftrightarrow\dfrac{x^2-2x+5-x^2+2x+x-2}{x-2}\ge0.\\ \Leftrightarrow\dfrac{x+3}{x-2}\ge0.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0.\\x-2\ge0.\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0.\\x-2\le0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3.\\x\ge2.\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3.\\x\le2.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge2.\\x\le-3.\end{matrix}\right.\)
Kết hợp ĐKXĐ.
\(\Rightarrow\left[{}\begin{matrix}x>2.\\x\le-3.\end{matrix}\right.\)
\(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}\le0.\left(x\ne1;x\ne\dfrac{-3}{2}\right).\)
Đặt \(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}=f\left(x\right).\)
Ta có bảng sau:
\(x\) | \(-\infty\) \(-\dfrac{3}{2}\) \(-\dfrac{1}{2}\) \(1\) \(2\) \(+\infty\) |
\(1+2x\) | - | - 0 + | + | + |
\(x-2\) | - | - | - | - 0 + |
\(2x+3\) | - 0 + | + | + | + |
\(1-x\) | + | + | + 0 - | - |
\(f\left(x\right)\) | - || + 0 - || + 0 - |
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left(\dfrac{-3}{2};\dfrac{-1}{2}\right)\cup\)(1;2].
\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\text{ĐKXĐ:}x\ne3;-1;\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}MTC:2\left(x+1\right)\left(x-3\right)\)
\(\Rightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow2x^2-2x=4x\)
\(\Leftrightarrow2x^2-2x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\left(\text{loại}\right)\end{matrix}\right.\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{0\right\}\)
\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne1;x\ne3\right)\\ \Leftrightarrow\dfrac{x.\left(x+1\right)+x.\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}\\ \Rightarrow x^2+x+x^2-3x=4x\\ \Leftrightarrow2x^2-2x-4x=0\\ \Leftrightarrow2x\left(x-3\right)=0\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\)
loại
Vậy phương trình có tập nghiệm S={\(\varnothing\)}
a: \(log\left(x-2\right)< 3\)
=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)
b: \(log_2\left(2x-1\right)>3\)
=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)
=>2x>10
=>x>5
c: \(log_3\left(-x-1\right)< =2\)
=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)
d: \(log_2\left(2x-3\right)>=2\)
=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)
=>2x-3>=4
=>2x>=7
=>\(x>=\dfrac{7}{2}\)
e: \(log_3\left(2x-7\right)>2\)
=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)
=>2x-7>9
=>2x>16
=>x>8
a.
\(log\left(x-2\right)< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)
b.
\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)
c.
\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)
d.
\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)
e,
\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)
Bài làm:
Đặt \(\hept{\begin{cases}x-1=a\\x+2=b\end{cases}}\Rightarrow a+b=2x+1\)
\(Pt\Leftrightarrow a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3-b^3=0\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow3\left(x-1\right)\left(x+2\right)\left(2x+1\right)=0\)
Đến đây giải PT tích ra ta được: \(x\in\left\{-2;-\frac{1}{2};1\right\}\)