Tam giác ABC có AB < AC . Phân giác AM. Trên tia AC lấy N sao cho AN = AB. K là giao điểm các đường thẳng AB và MN. Chứng minh rắng:
a, MB = MN
b, Tam giác MBK = tam giác MNC
c, AM vuông góc với KC và BN song song với KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, có AB=AN
AM phân giác \(=>\angle\left(BAM\right)=\angle\left(NAM\right)\)
AM chung=>tam giác ABM=tam giác ANM(c.g.c)
=>BM=MN
b,có BM=MN
vì tam giác ABM=tam giác ANM
\(=>\angle\left(ABM\right)=\angle\left(ANM\right)=>\angle\left(MBK\right)=\angle\left(MNC\right)\)
có \(\angle\left(BMK\right)=\angle\left(NMC\right)\left(doi-dinh\right)\)
=>tam giác MBK=tam giác MNC(g.c.g)
c,AM làm sao bạn? chắc là trung trực à
có tam giác MBK=tam giác MNC=>BK=NC
mà AB=AN=>AK=AC=>tam giác AKC cân tại A có AM phân giác nên đồng thời trung trực
có BM=MN
KM=MC
\(=>\dfrac{BM}{MC}=\dfrac{MN}{MK}\)=>BN//KC
d, \(MC-MB< BC-BC=0\)
\(AC>AB=>AC-AB>0\)
\(=>AC-AB>MC-MB\)
A) tam giác AMB và tam giác AMN có: AN=AB; A1=A2. ÂM chứng => tam giác AMB=tam giác AMN(c.g.c)=> MB=MN ( 2 cạnh tương ứng)
b) tam giác AMB=tam giác AMN (cmt)=> góc ABM=góc ANM.
góc ABM+góc MBK=180 độ; góc ANM+góc MNC=180
=> góc MBK=góc MNC
tam giác MBK và tam giác MNC: góc MBK=góc MNC(cmt); MB=MN(cmt); góc BMK=góc NMC(đối đỉnh)=> 2 tam giác = nhau (g.c.g)
c)tam giác MBK = tam giác MNC=> BK=NC
AK=AB+Bk; AC=AN+NC. mà AB=AN; BK=NC
=> AK=AC => tam giác AKC cân tại A. AM là phân giác => đồng thời là đường cao => AM vuông góc KC.
tam giác ABN cân tại A(AB=AN) => AM là phân giác đồng thời là đường cao => AM vuông góc BN
=> KC//BN( cùng vuông góc với AM)
d) AB=AN=> AC-AB=AC-AN=NC(1)
tam giác MBK = tam giác MNC=> MB=MN
=> MC-MB=MC-MN
áp dụng bất đẳng thức tam giác ta có: NC+MN>MC <=> NC>MC-MN
hay AC-AB>MC-MB
mình làm bài này vừa phải kẻ hình lại còn dài nữa, nhớ L I K E nha. haizz
Xét \(\Delta\)ABM và \(\Delta\)AMN có :
AM chung
Góc A1= góc A2 ( gt )
AB=AN ( gt)
=>\(\Delta\)ABM=\(\Delta\)AMN ( c.g.c)
=> BM=MN
b . Ta có : góc ABM + góc MBK = 1800( vì kề bù )
Tương tự : góc ANM + góc MNC = 1800
Mà : góc ABM = góc AMN ( vì \(\Delta\)ABM = \(\Delta\)AMN )
=> góc MBK = góc MNC
Xét \(\Delta\)MBK và\(\Delta\)MNC có :
góc MBK = góc MNC ( CMT)
BM=CM ( theo câu a )
Góc M1= góc M2 ( đối đỉnh )
=> \(\Delta\)MBK = \(\Delta\)MNC ( g.c.g)
Bạn kí hiệu A1,A2,M1,M2 giùm mình nhé !!
a) Xét \(\Delta\)ABM và \(\Delta\) ANM có :
\(\hept{\begin{cases}AB=AN\\\widehat{A_1}=\widehat{A_2}\\AM\text{ chung}\end{cases}\Rightarrow\Delta ABM=\Delta ANM}\)(c.g.c)
=> MB = MN (cạnh tương ứng)
=> BM = MN (cạnh tương ứng)
=> \(\widehat{ABM}=\widehat{ANM}\text{ mà }\widehat{ABM}+\widehat{MBK}=\widehat{ANM}+\widehat{MNC}\left(=180^{\text{o}}\right)\Rightarrow\widehat{MBK}=\widehat{MNC}\)
b) Xét \(\Delta BMK\text{ và }\Delta BMC\text{ có }\)
\(\hept{\begin{cases}BM=MN\left(cmt\right)\\\widehat{M1}=\widehat{M2}\left(\text{đối đỉnh}\right)\\\widehat{MBK}=\widehat{MNC}\left(cmt\right)\end{cases}}\Rightarrow\Delta BMK=\Delta NMC\left(g.c.g\right)\)
=> BK = NC( cạnh tương ứng)
Vì AB = AN
=> \(\Delta\)ABN cân tại A => \(\widehat{B_2}=\widehat{N_2}\)
Lại có \(\widehat{A}+\widehat{B1}+\widehat{N2}=180^{\text{o}}\Rightarrow\widehat{B1}=\frac{180^{\text{o}}-\widehat{A}}{2}\) (1)
vÌ AB = AN => AB + AK = AN + NC => AK = AC => \(\Delta AKC\)cân tại A
=> \(\widehat{K}=\widehat{C}\text{ mà }\widehat{A}+\widehat{K}+\widehat{C}=180^{\text{o}}\Rightarrow\widehat{K}=\frac{180^{\text{o}}-\widehat{A}}{2}\)(2)
Từ (1) ; (2) => \(\widehat{B1}=\widehat{K}\)=> BN//BC (2 góc đồng vị bằng nhau)
c) Kéo dài AM sao cho \(AM\Omega BC=\left\{H\right\}\)
Xét \(\Delta AKH\text{ và }\Delta ACH\text{ có }\)
\(\hept{\begin{cases}AK=AC\\\widehat{A1}=\widehat{A2}\\AH\text{ chung}\end{cases}}\Rightarrow\Delta AKH=\Delta ACH\left(C.C.C\right)\)
=> \(\widehat{H1}=\widehat{H2}\text{ mà }\widehat{H1}+\widehat{H2}=180^{\text{o}}\Rightarrow\widehat{H1}=\widehat{H2}=90^{\text{o}}\Rightarrow AH\perp KC\)
\(\Delta\)
a) Xét \(\Delta ABM\)và \(\Delta ANM\)có :
\(AB=AN\left(gt\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
\(AM\)chung
\(\Rightarrow\Delta ABM=\Delta ANM\left(c.g.c\right)\)
\(\Rightarrow MB=MN\)( 2 cạnh tương ứng )
b) Ta có : \(\Delta ABM=\Delta ANM\left(cmt\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{ANM}\)( 2 góc tương ứng )
mà \(\widehat{ABM}+\widehat{MBK}=180^o\)( kề bù )
và \(\widehat{ANM}+\widehat{MNC}=180^o\)( kề bù )
\(\Rightarrow\widehat{MBK}=\widehat{MNC}\)
Xét \(\Delta MBK\)và \(\Delta MNC\)có :
\(\widehat{MBK}=\widehat{MNC}\left(cmt\right)\)
\(MB=MN\left(cmt\right)\)
\(\widehat{BMK}=\widehat{CMK}\)( đối đỉnh )
\(\Rightarrow\Delta MBK=\Delta MNC\left(g.c.g\right)\)
c) Gọi giao của AM và KC tại I
Ta có : \(\Delta ABM=\Delta ANM\left(cmt\right)\)
\(\Rightarrow AB=AN\)( 2 cạnh tương ứng ) (1)
Ta lại có : \(\Delta MBK=\Delta MNC\left(cmt\right)\)
\(\Rightarrow BK=NC\)( 2 cạnh tương ứng ) (2)
Từ \(\left(1\right);\left(2\right)\Rightarrow AB+BK=AN+NC\)
\(\Rightarrow AK=AC\)
Xét \(\Delta KAI\)và \(\Delta CAI\)có :
\(AK=AC\left(cmt\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
AI chung
\(\Rightarrow\Delta KAI=\Delta CAI\left(c.g.c\right)\)
\(\Rightarrow\widehat{AIK}=\widehat{AIC}\)( 2 góc tương ứng )
mà \(\widehat{AIK}+\widehat{AIC}=180^o\)( kề bù )
\(\Rightarrow\widehat{AIK}=90^o\)
\(\Rightarrow AI\perp KC\)hay \(AM\perp KC\)
Ta có : AB = AN ( cmt )
\(\Rightarrow\Delta BAN\)cân tại A
\(\Rightarrow\widehat{ABN}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Ta lại có : AK = AC ( cmt )
\(\Rightarrow\Delta KAC\)cân tại A
\(\Rightarrow\widehat{AKC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{ABN}=\widehat{AKC}\)
mà 2 góc nằm ở vị trí so le trong
\(\Rightarrow BN//KC\)