K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Xét \(x< \frac{1}{4}\Rightarrow\hept{\begin{cases}4x-1< 0\\x-3< 0\end{cases}\Rightarrow}\hept{\begin{cases}\left|4x-1\right|=1-4x\\\left|x-3\right|=3-x\end{cases}}\)

Khi đó biểu thức : \(2\left|x-3\right|-\left|4x-1\right|=2\left(3-x\right)-\left(1-4x\right)=2x+5\)

Xét \(\frac{1}{4}\le x< 3\Rightarrow\hept{\begin{cases}4x-1\ge0\\x-3< 0\end{cases}\Rightarrow}\hept{\begin{cases}\left|4x-1\right|=4x-1\\\left|x-3\right|=3-x\end{cases}}\)

Khi đó biểu thức : \(2\left|x-3\right|-\left|4x-1\right|=2\left(3-x\right)-\left(4x-1\right)=-6x+7\)

\(x\ge3\Rightarrow\hept{\begin{cases}4x-1>0\\x-3\ge0\end{cases}\Rightarrow}\hept{\begin{cases}\left|4x-1\right|=4x-1\\\left|x-3\right|=x-3\end{cases}}\)

Khi đó biểu thức : \(2\left|x-3\right|-\left|4x-1\right|=2\left(x-3\right)-\left(4x-1\right)=-2x-5\)

10 tháng 8 2020

TH1: Nếu \(x< \frac{1}{4}\)\(\Rightarrow\hept{\begin{cases}\left|x-3\right|=-\left(x-3\right)\\\left|4x-1\right|=-\left(4x-1\right)\end{cases}}\)

\(\Rightarrow2\left|x-3\right|-\left|4x-1\right|=-2\left(x-3\right)+\left(4x-1\right)\)

\(=-2x+6+4x-1=2x+5\)

TH2: Nếu \(\frac{1}{4}\le x\le3\)\(\Rightarrow\hept{\begin{cases}\left|x-3\right|=-\left(x-3\right)\\\left|4x-1\right|=4x-1\end{cases}}\)

\(\Rightarrow2\left|x-3\right|-\left|4x-1\right|=-2\left(x-3\right)-\left(4x-1\right)\)

\(=-2x+6-4x+1=-6x+7\)

TH3: Nếu \(x>3\)\(\Rightarrow\hept{\begin{cases}\left|x-3\right|=x-3\\\left|4x-1\right|=4x-1\end{cases}}\)

\(\Rightarrow2\left|x-3\right|-\left|4x-1\right|=2\left(x-3\right)-\left(4x-1\right)\)

\(=2x-6-4x+1=-2x-5\)

17 tháng 4 2021

\(\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}\)

Để biểu thức trên nhận giá trị âm khi \(\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}< 0\)

\(\Rightarrow x^3-2x^2-4x+8< 0\)do \(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-2x\left(x+2\right)< 0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)^2< 0\Leftrightarrow x< -2\)

 

26 tháng 2 2022

(-3).8/8.6 rút gọn

a: Ta có: \(P=\left(x-1\right)^2-4x\left(x+1\right)\left(x-1\right)+3\)

\(=x^2-2x+1-4x\left(x^2-1\right)+3\)

\(=x^2-2x+4-4x^3+4x\)

\(=-4x^3+x^2+2x+4\)

b: Thay x=-2 vào P, ta được:

\(P=-4\cdot\left(-8\right)+4-4+4=36\)

11 tháng 12 2020

Bài 1 : 

\(\left(x-2\right)^2-\left(x-3^2\right)=\left(x-2\right)^2-\left(x-9\right)\)

\(=x^2-4x+4-x+9=x^2-5x+13\)

Bài 2 : 

a, \(P=\frac{1-4x^2}{4x^2-4x+1}=\frac{\left(1-2x\right)\left(2x+1\right)}{\left(2x-1\right)^2}\)

\(=\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)^2}=\frac{-\left(2x+1\right)}{2x-1}=\frac{-2x-1}{2x-1}\)

b, Thay x = -4 ta được : 

\(\frac{-2.\left(-4\right)-1}{2.\left(-4\right)-1}=\frac{8-1}{-8-1}=-\frac{7}{9}\)

24 tháng 2 2017

TH1: x<1/4 

=>2|x-3|-|4x-1|=2(3-x)-(1-4x)=6-2x-1+4x=5+2x

TH2: \(\frac{1}{4}\le x\le3\)

=>2|x-3|-|4x-1|=2(3-x)-(4x-1)=6-2x-4x+1=7-6x

TH3: x>3

=>2|x-3|-|4x-1|=2(x-3)-(4x-1)=2x-6-4x+1=-2x-5

NV
26 tháng 12 2022

1,

\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)

\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)

2.

\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

3.

Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)

NV
26 tháng 12 2022

4.

\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)

\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)

5.

\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)

\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)

\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)

29 tháng 3 2022

yggucbsgfuyvfbsudy

30 tháng 3 2022

????????

a: Ta có: \(\left(8x^3-4x^2\right):4x-\left(4x^2-5x\right):2x+\left(2x\right)^2\)

\(=2x^2-x-2x+\dfrac{5}{2}+4x^2\)

\(=6x^2-3x+\dfrac{5}{2}\)

b: Ta có: \(\left(3x^3-x^2y\right):x^2-\left(xy^2+x^2y\right):xy+2x\left(x-1\right)\)

\(=3x-y-y-x+2x^2-2x\)

\(=2x^2-2y\)