K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

Sai òi

11 tháng 8 2020

Sai chỗ nào

HAHAHA

11 tháng 8 2017

Hệ { x^3 + y^3 + z^3 = 3 
{ x + y + z = 3 
Ta có : x + y + z = 3 
<=> x + y = 3 - z 
<=> (x + y)^3 = (3 - z)^3 
<=> x^3 + 3x^2y + 3xy^2 + y^3 = 27 - 27z + 9z^2 - z^3 
<=> (x^3 + y^3 + z^3) + 3xy(x + y) + 9z(3 - z) = 27 
<=> 3 + 3xy(3 - z) + 9z(3 - z) = 27 
<=> 3xy(3 - z) + 9z(3 - z) = 24 
<=> (3 - z)(xy + 3z) = 8 (*) 
Vì x,y,z nguyên nên (*) tương tương với các hệ sau: 
{ 3 - z = 8 => z = - 5 => x + y = 3 - z = 8 
{ xy + 3z = 1 => xy = 1 - 3z = 16 
=> x, y là nghiệm của pt: t^2 - 8t +16 = 0 <=> (t - 4)^2 = 0 <=> x = y = 4 
{ 3 - z = - 8 => z = 11 => x + y = 3 - z = -8 
{ xy + 3z = -1 => xy = - 1 - 3z = - 34 
=> x, y là nghiệm của pt: t^2 + 8t - 34 = 0 => loại vì x, y không nguyên 
{ 3 - z = 4 => z = -1 => x + y = 3 - z = 4 
{ xy + 3z = 2 => xy = 2 - 3z = 5 
=> x, y là nghiệm của pt: t^2 - 4t + 5 = 0 => vô nghiệm 
{ 3 - z = - 4 => z = 7 => x + y = 3 - z = - 4 
{ xy + 3z = - 2 => xy = - 2 - 3z = -23 
=> x, y là nghiệm của pt: t^2 + 4t - 23 = 0 => loại vì x, y không nguyên 
{ 3 - z = 2 => z = 1 => x + y = 3 - z = 2 
{ xy + 3z = 4 => xy = 4 - 3z = 1 
=> x, y là nghiệm của pt: t^2 - 2t +1 = 0 => x = y = 1 
{ 3 - z = - 2 => z = 5 => x + y = 3 - z = - 2 
{ xy + 3z = - 4 => xy = - 4 - 3z = - 19 
=> x, y là nghiệm của pt: t^2 + 2t -19 = 0 => loại vì x, y không nguyên 
{ 3 - z = 1 => z = 2 => x + y = 3 - z = 1 
{ xy + 3z = 8 => xy = 8 - 3z = 2 
=> x, y là nghiệm của pt: t^2 - t + 2 = 0 => vô nghiệm 
{ 3 - z = - 1 => z = 4 => x + y = 3 - z = -1 
{ xy + 3z = - 8 => xy = - 8 - 3z = - 20 
=> x, y là nghiệm của pt: t^2 + t - 20 = 0 => x = - 5; y = 4 hoặc x = 4; y = -5 
Kết luận: Vậy tập nghiệm nguyên của hệ là S ={(x,y,z)} = {(1,1,1);(4,4,-5);(-5,4,4);(4,-5,4)}

11 tháng 8 2017

trc nhìn đề xong copier đã hành động xong rồi, mà copy ko nhìn hả bn ei :v

17 tháng 11 2017

mk ms hok lp 6 thoy nên ko biết làm 

tk mk nha

chúc các bn hok tốt !

17 tháng 11 2017

điêu thế làm sao 3 dc

19 tháng 12 2017

đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT

rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...

19 tháng 12 2017

làm cho mk luôn đi bạn

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
22 tháng 6 2023

\(\left(x^2+y\right)\left(x+y^2\right)=\left(x+y\right)^3\)

\(\Leftrightarrow x^3+x^2y^2+xy+y^3=x^3+y^3+3xy\left(x+y\right)\)

\(\Leftrightarrow xy\left(xy+1\right)=3xy\left(x+y\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy-3x-3y+1=0\end{matrix}\right.\)

 TH1: \(x=0\) thì thay vào pt đề bài, suy ra điều luôn đúng với mọi số nguyên \(x\). Hơn nữa do vai trò \(x,y\) như nhau nên tương tự với trường hợp \(y=0\) 

 TH2: \(xy-3x-3y+1=0\)

\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=8\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=8\)

Từ đó ta có bảng:

\(x-3\) 1 8 2 4 -1 -8 -2 -4
\(y-3\) 8 1 4 2 -8 -1 -4 -2
\(x\) 4 11 5 7 2 -5 1 -1
\(y\) 11 4 7 5 -5 2 -1 1

Như vậy trong trường hợp này, ta tìm ra được các nghiệm \(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)

Tóm lại, ta tìm được các nghiệm nguyên sau của pt đã cho:

\(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)\(\left(0;y\right),\forall y\inℤ\) và \(\left(x;0\right),\forall x\inℤ\)