![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hệ { x^3 + y^3 + z^3 = 3
{ x + y + z = 3
Ta có : x + y + z = 3
<=> x + y = 3 - z
<=> (x + y)^3 = (3 - z)^3
<=> x^3 + 3x^2y + 3xy^2 + y^3 = 27 - 27z + 9z^2 - z^3
<=> (x^3 + y^3 + z^3) + 3xy(x + y) + 9z(3 - z) = 27
<=> 3 + 3xy(3 - z) + 9z(3 - z) = 27
<=> 3xy(3 - z) + 9z(3 - z) = 24
<=> (3 - z)(xy + 3z) = 8 (*)
Vì x,y,z nguyên nên (*) tương tương với các hệ sau:
{ 3 - z = 8 => z = - 5 => x + y = 3 - z = 8
{ xy + 3z = 1 => xy = 1 - 3z = 16
=> x, y là nghiệm của pt: t^2 - 8t +16 = 0 <=> (t - 4)^2 = 0 <=> x = y = 4
{ 3 - z = - 8 => z = 11 => x + y = 3 - z = -8
{ xy + 3z = -1 => xy = - 1 - 3z = - 34
=> x, y là nghiệm của pt: t^2 + 8t - 34 = 0 => loại vì x, y không nguyên
{ 3 - z = 4 => z = -1 => x + y = 3 - z = 4
{ xy + 3z = 2 => xy = 2 - 3z = 5
=> x, y là nghiệm của pt: t^2 - 4t + 5 = 0 => vô nghiệm
{ 3 - z = - 4 => z = 7 => x + y = 3 - z = - 4
{ xy + 3z = - 2 => xy = - 2 - 3z = -23
=> x, y là nghiệm của pt: t^2 + 4t - 23 = 0 => loại vì x, y không nguyên
{ 3 - z = 2 => z = 1 => x + y = 3 - z = 2
{ xy + 3z = 4 => xy = 4 - 3z = 1
=> x, y là nghiệm của pt: t^2 - 2t +1 = 0 => x = y = 1
{ 3 - z = - 2 => z = 5 => x + y = 3 - z = - 2
{ xy + 3z = - 4 => xy = - 4 - 3z = - 19
=> x, y là nghiệm của pt: t^2 + 2t -19 = 0 => loại vì x, y không nguyên
{ 3 - z = 1 => z = 2 => x + y = 3 - z = 1
{ xy + 3z = 8 => xy = 8 - 3z = 2
=> x, y là nghiệm của pt: t^2 - t + 2 = 0 => vô nghiệm
{ 3 - z = - 1 => z = 4 => x + y = 3 - z = -1
{ xy + 3z = - 8 => xy = - 8 - 3z = - 20
=> x, y là nghiệm của pt: t^2 + t - 20 = 0 => x = - 5; y = 4 hoặc x = 4; y = -5
Kết luận: Vậy tập nghiệm nguyên của hệ là S ={(x,y,z)} = {(1,1,1);(4,4,-5);(-5,4,4);(4,-5,4)}
trc nhìn đề xong copier đã hành động xong rồi, mà copy ko nhìn hả bn ei :v
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)
\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
Đây là bài gần giống nhé
Sai òi
Sai chỗ nào
HAHAHA