tìm số hữu tỉ
1/x-1+-2/3(3/4-6/5)=5/2-2x
Gấp , hạn chót là 15h ngày mai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
\(a,2\left(\frac{3}{4}-5x\right)=\frac{4}{5}-3x\)
\(\Rightarrow\frac{3}{2}-10x=\frac{4}{5}-3x\)
\(\Rightarrow7x=\frac{3}{2}-\frac{4}{5}\)
\(\Rightarrow7x=\frac{7}{10}\)\(\Leftrightarrow x=0,1\)
\(b,\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow11x=\frac{2}{3}+1-\frac{3}{2}\)
\(\Rightarrow11x=\frac{4+6-9}{6}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
Câu 2 :
\(a,\frac{2}{x-1}< 0\)
Vì \(2>0\Rightarrow\)để \(\frac{2}{x-1}< 0\)thì \(x-1< 0\Leftrightarrow x< 1\)
\(b,\frac{-5}{x-1}< 0\)
Vì \(-5< 0\)\(\Rightarrow\)để \(\frac{-5}{x-1}< 0\)thì \(x-1>0\Rightarrow x>1\)
\(c,\frac{7}{x-6}>0\)
Vì \(7>0\Rightarrow\)để \(\frac{7}{x-6}>0\)thì \(x-6>0\Rightarrow x>6\)
1,
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{2017}+1\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2018}{2017}\)
\(=\frac{2018}{2}=1009\)
2,
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2018}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2017}{2018}\)
\(=\frac{-1\cdot2017}{2018}=\frac{-2017}{2018}\)
1/ a/\(-\frac{7}{18}=\left(-\frac{7}{2}\right)\left(\frac{1}{9}\right)\)
b/\(-\frac{7}{18}=\left(-\frac{7}{9}\right):2\)
2/
a/\(\frac{7}{15}\cdot\left(-\frac{3}{8}-\frac{3}{7}\right)=\frac{7}{15}\cdot\left(-\frac{45}{56}\right)=-\frac{3}{8}\)
b/\(\left(-\frac{3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+-\frac{4}{4}\right):\frac{3}{7}\)
\(=\left(-\frac{7}{20}\right):\frac{3}{7}+\left(-\frac{2}{5}\right):\frac{3}{7}\)
\(=\left(-\frac{49}{60}\right)+\left(-\frac{14}{15}\right)=-\frac{7}{4}\)
c/\(\frac{2}{3}\cdot\left(-\frac{5}{2}\right)+\frac{10}{15}\cdot\left(-\frac{3}{7}\right)-\frac{2}{3}\cdot\left(-\frac{5}{3}\right)\)
\(=\frac{2}{3}\cdot\left(-\frac{5}{2}-\frac{3}{7}+\frac{5}{3}\right)=-\frac{53}{63}\)
3/
\(2-\left(3-x\right)=-\frac{3}{2}\)
\(2-3+x=-\frac{3}{2}\)
\(x=-\frac{3}{2}+3-2=-\frac{1}{2}\)
4/
a/ Ta có 2 trường hợp:
TH1: \(x-3,5=7,5\)
\(x=7,5+3,5=11\)
TH2: \(x-3,5=-7,5\)
\(x=-7,5+3,5=-4\)
b/ Ta có 2 trường hợp:
TH1:\(x-0,4=3,6\)
\(x=4\)
TH2: \(x-0,4=-3,6\)
\(x=-3.2\)
c/ Ta có 2 trường hợp:
TH1:\(x+\frac{4}{5}=\frac{3}{2}\)
\(x=\frac{7}{10}\)
TH2:\(x+\frac{4}{5}=-\frac{3}{2}\)
\(x=-\frac{32}{10}\)
Bài 1:
\(-4\dfrac{1}{6}=\dfrac{-4.6+1}{6}=\dfrac{-23}{6}\)
\(5\dfrac{2}{3}=\dfrac{5.3+2}{3}=\dfrac{17}{3}\)
\(-6\dfrac{1}{6}=\dfrac{-6.6+1}{6}=\dfrac{-35}{6}\)
Bài 2:
\(9\dfrac{4}{5}=\dfrac{9.5+4}{5}=\dfrac{49}{5}\)
\(-10\dfrac{1}{2}=\dfrac{-10.2+1}{2}=\dfrac{-19}{2}\)
\(1\dfrac{1}{10}=\dfrac{1.10+1}{10}=\dfrac{11}{10}\)
\(#Wendy.Dang\)
Bài 1:Viết các số sáu dưới dang số hữu tỉ:
-4 1/6=-25/6
5 2/3=17/2
-6 1/6=37/6
Bài 2:Viết các số sáu dưới dang số hữu tỉ:
9 4/5 =49/5
-10 1/2=21/2
1 1/10=11/10
\(\frac{1}{x-1}-\frac{2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
=> \(\frac{1}{x-1}-\frac{1}{2}+\frac{4}{5}=\frac{5}{-2}.\frac{1}{x-1}\)
=> \(\frac{1}{x-1}+\frac{3}{10}=\frac{-5}{2}.\frac{1}{x-1}\)
=> \(-\frac{5}{2}.\frac{1}{x-1}-\frac{1}{x-1}=\frac{3}{10}\)
=> \(\frac{1}{x-1}.\left(-\frac{7}{2}\right)=\frac{3}{10}\)
=> \(\frac{1}{x-1}=\frac{-3}{35}\)
=> -3(x - 1) = 35
=> -3x + 3 = 35
=> -3x = 32
=> x = -32/3
\(\frac{1}{x-1}-\frac{2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)ĐK \(x\ne1\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{2}{3}\left(-\frac{9}{20}\right)=\frac{5}{2-2x}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2-2x}\)
\(\Leftrightarrow\frac{10\left(2-2x\right)}{10\left(x-1\right)\left(2-2x\right)}+\frac{3\left(x-1\right)\left(2-2x\right)}{10\left(x-1\right)\left(2-2x\right)}=\frac{50\left(x-1\right)}{10\left(2-2x\right)\left(x-1\right)}\)
\(\Leftrightarrow20-20x+12x-6x^2-6=50x-50\)
\(\Leftrightarrow14-8x-6x^2=50x-50\)
\(\Leftrightarrow64-58x-6x^2=0\)
\(\Leftrightarrow-2\left(3x+32\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{32}{3}\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)