K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

29 tháng 10 2023

a: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC^2=4^2+3^2=25\)

=>AC=5(cm)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>BH*5=3*4=12

=>BH=2,4(cm)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)

=>\(\widehat{BAC}\simeq37^0\)

b: Xét ΔABE vuông tại A có AH là đường cao

nên \(BH\cdot BE=BA^2\)(1)

Xét ΔABC vuông tại B có BH là đường cao

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có

\(\widehat{HBC}\) chung

Do đó: ΔBHC\(\sim\)ΔBFE

=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)

=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)

Xét ΔBHF và ΔBCE có

BH/BC=BF/BE

\(\widehat{HBF}\) chung

Do đó: ΔBHF\(\sim\)ΔBCE

 

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA

=>BA^2=BH*BC

=>BA=6cm

Bài 3:

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{ABC}\) chung

Do đó: ΔHBA~ΔABC

b: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=9^2+12^2=225\)

=>\(BC=\sqrt{225}=15\left(cm\right)\)

Xét ΔBAC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot15=9^2=81\)

=>\(BH=\dfrac{81}{15}=5,4\left(cm\right)\)

c: ta có: HK\(\perp\)AB

AC\(\perp\)AB

Do đó: HK//AC

Xét ΔCAB có HK//AC

nên \(\dfrac{HK}{AC}=\dfrac{BH}{BC}\)

=>\(\dfrac{HK}{12}=\dfrac{5.4}{15}=\dfrac{54}{150}=\dfrac{9}{25}\)

=>\(HK=12\cdot\dfrac{9}{25}=\dfrac{108}{25}=4,32\left(cm\right)\)

23 tháng 4 2018

ai giúp với