K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

(3x - 4)(x - 2) = 3x(x - 9) - 3

=> 3x2 - 10x + 8 = 3x2 - 27x - 3

=> 27x - 10x = -3 - 8

=> 17x = -11

=> x = -11/17 

\(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)

\(\Leftrightarrow3x^2-6x-4x+8=3x^2-27x-3\)

\(\Leftrightarrow3x^2-10x+8=3x^2-27x-3\)

\(\Leftrightarrow17x+11=0\)

\(\Leftrightarrow17x=-11\)

\(\Leftrightarrow x=\frac{-11}{17}\)

17 tháng 7 2021

(1-3x2)-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)2

⇒1-3x2-(9x2+x-18x-2)=9x2-16-9(x2+6x+9)

⇒1-3x2-(9x2-17x-2)= -56x-97

⇒1-3x2-9x2+17x+2=-56x-97

⇒3-12x2+17x=-56x-97

⇒3-12x2+17x+56x+97=0

⇒-12x2+73x+100=0

⇒-(12x2-73x-100)=0

 

a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)

\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)

\(\Leftrightarrow24x=-13\)

hay \(x=-\dfrac{13}{24}\)

31 tháng 7 2023

\(4.3^x+3^{x+1}=63\)

\(\Rightarrow4.3^x+3.3^x=63\)

\(\Rightarrow7.3^x=63\Rightarrow3^x=9=3^2\Rightarrow x=2\)

\(9.\left(\dfrac{2}{3}\right)^{x+2}-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)

\(\Rightarrow9.\left(\dfrac{2}{3}\right)^2\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)

\(\Rightarrow9.\dfrac{4}{9}^{ }.\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\left(4-1\right)=\dfrac{4}{3}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\dfrac{1}{3}=\dfrac{4}{3}\Rightarrow\left(\dfrac{2}{3}\right)^x=4\)

mà \(0< \left(\dfrac{2}{3}\right)^x< 1;4>0;x>0\)

\(\Rightarrow x\in\varnothing\)

30 tháng 6 2021

Ta có:(x-3)(x2+3x+9)-x(x2-4)=1

     => x3-27-x3+4x=1

     =>4x=28=>x=7

24 tháng 10 2021

d: ta có: \(x^2-4x+4=9\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)

1: =>x^2+4x-21=0

=>(x+7)(x-3)=0

=>x=3 hoặc x=-7

2: =>(2x-5-4)(2x-5+4)=0

=>(2x-9)(2x-1)=0

=>x=9/2 hoặc x=1/2

3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15

=>-9x^2+27x+9x^2+18x+9=15

=>18x=15-9-27=-21

=>x=-7/6

6: =>4x^2+4x+1-4x^2-16x-16=9

=>-12x-15=9

=>-12x=24

=>x=-2

7: =>x^2+6x+9-x^2-4x+32=1

=>2x+41=1

=>2x=-40

=>x=-20

Bài 2:

a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)

\(=2x^3+6x\)

b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)

\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)

\(=27x-55\)

b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)

\(\Rightarrow x^2-9x+20-x^2+x+2=7\)

\(\Rightarrow-8x+22=7\)

\(\Rightarrow-8x=-15\)

\(\Rightarrow x=\frac{15}{8}\)

c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)

\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)

\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)

\(\Rightarrow17x=-11\)

\(\Rightarrow x=-\frac{11}{17}\)

d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)

\(\Rightarrow6x=-27\)

\(\Rightarrow x=-\frac{27}{6}\)

\(\Rightarrow x=-\frac{9}{2}\)

e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)

\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)

\(\Rightarrow-4=x-4\)

\(\Rightarrow x=0\)

9 tháng 7 2019

b)    (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8

c)    (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17

d)    (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27

e)    (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0