Cho x,y,z thỏa mãn \(x^2+y^2+z^2=1\).CMR:
\(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\ge\frac{3}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(RHS\ge\frac{\left(x+y+z\right)^2}{\sqrt{5x^2+2xy+y^2}+\sqrt{5y^2+2yz+z^2}+\sqrt{5z^2+2zx+x^2}}\)
Thử chứng minh \(\sqrt{5x^2+2xy+y^2}\le\frac{3\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y\) cái này xem sao
khi đó:
\(RHS\ge\frac{9}{\frac{3\sqrt{2}}{2}\left(x+y+z\right)+\frac{\sqrt{2}}{2}\left(x+y+z\right)}=\frac{3}{2\sqrt{2}}\)
Dấu "=" xảy ra tại x=y=z=1
Cần chứng minh BĐT sau : \(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}\ge\frac{5x-y}{8\sqrt{2}}\)
\(\Leftrightarrow8\sqrt{2}x^2\ge\left(5x-y\right)\sqrt{5x^2+2xy+y^2}\) ( 1 )
Xét 5x - y \(\le\)0 \(\Rightarrow\)VT \(\ge\)0 ; VP \(\le\)0 \(\Rightarrow\)BĐT đã được chứng minh
Xét 5x - y \(\ge\)0 . Bình phương 2 vế của ( 1 ), ta được :
\(128x^4\ge\left(25x^2-10xy+y^2\right)\left(5x^2+2xy+y^2\right)\)
\(\Leftrightarrow128x^4\ge125x^4+10x^2y^2-8xy^3+y^4\)
\(\Leftrightarrow3x^4-10x^2y^2+8xy^3-y^4\ge0\)
\(\Leftrightarrow\left(3x^4-3xy^3\right)+\left(10xy^3-10x^2y^2\right)+\left(xy^3-y^4\right)\ge0\)
\(\Leftrightarrow3x\left(x-y\right)\left(x^2+xy+y^2\right)+10xy^2\left(y-x\right)+y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(3x^3+3x^2y+3xy^2-10xy^2+y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(3x^3-3xy^2\right)+\left(3x^2y-3xy^2\right)-\left(xy^2-y^3\right)\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(3x^2+6xy-y^2\right)\ge0\)( luôn đúng )
( Vì \(5x-y\ge0\Rightarrow x\ge\frac{y}{5}\)\(\Rightarrow3x^2+6xy-y^2\ge3.\left(\frac{y}{5}\right)^2+6.\frac{y}{5}.y-y^2=\frac{8}{25}y^2\ge0\))
Tương tự : \(\frac{y^2}{\sqrt{5y^2+2yz+z^2}}\ge\frac{5y-z}{8\sqrt{2}}\); \(\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\ge\frac{5z-x}{8\sqrt{2}}\)
Cộng từng vế 3 BĐT lại với nhau, ta được :
\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\)
\(\ge\frac{5x-z+5y-z+5z-x}{8\sqrt{2}}=\frac{4\left(x+y+z\right)}{8\sqrt{2}}=\frac{3}{2\sqrt{2}}\)
Dấu "=' xảy ra khi x = y = z = 1
Vậy BĐT đã được chứng minh
pppppppppppppppppppppppppppppppppppppppppppppp'ppppppppppppppppppppppppppppp
ppppppppppppp
Tao co:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow yz+xz+xy=0\)
\(Suyra:yz=-xz-xy;xz=-yz-xy;xy=-yz-xz\)
\(\Rightarrow x^2+2yz=x^2+yz-xz-xy=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
\(\Rightarrow y^2+2xz=y^2+xz-yz-xy=z\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(z-y\right)\)
\(\Rightarrow z^2+2xy=z^2+xy-yz-xz=z\left(z-y\right)-x\left(z-y\right)=\left(z-y\right)\left(z-x\right)\)
\(Thay:\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)
\(=\frac{z-y+x-z-x+y}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\left(dpcm\right)\)
^^
Áp dụng bất đẳng thức Cauchy-Schwarz,ta có:
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{\left(x+y+z\right)^2}=\frac{9}{9}=1.\)(đpcm)
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2xz+2yz}=\frac{9}{\left(x+y+z\right)^2}=1\)
( áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\))
Bạn tự c/m BĐT : \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Dấu " = " xảy ra ta có:
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2yz+2zx}+\frac{1}{z^2+2xy}\)\(\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=\frac{9}{1}=9\)
Bạn tự giải dấu bằng nhé.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\) \(\Rightarrow xy+yz+zx=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=-\left(yz+zx\right)\\yz=-\left(xy+zx\right)\\zx=-\left(xy+yz\right)\end{matrix}\right.\)
Thay vào ta có:
\(\frac{1}{x^2+2yz}=\frac{1}{x^2+yz+yz}=\frac{1}{x^2-xy+yz-zx}=\frac{1}{\left(x-z\right)\left(x-y\right)}\)
CMTT:
\(PT\Leftrightarrow\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)
\(\Leftrightarrow\frac{\left(z-y\right)+\left(x-z\right)-\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(z-y\right)}=0\left(đpcm\right)\)
a) Vì x;y;z > 0 nên áp dụng bất đẳng thức Bunhiakovsky : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) , ta được :
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}\)
\(\Leftrightarrow\)\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Vậy \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\left(ĐPCM\right)\)
b) Ta chứng minh bất đẳng thức phụ :\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3ac-3bc\ge0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ab-ac\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+ab+ac\right)\)
Vì a,b,c > 0 nên áp dụng bất đẳng thức Bunhiakovsky : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) , ta được :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)
mà \(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
Vậy \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\left(ĐPCM\right)\)
Áp dụng BĐT Schwars và BĐT AM - GM:
\(\frac{x}{x^4+1+2xy}\le\frac{1}{4}x\left(\frac{1}{x^4+1}+\frac{1}{2xy}\right)=\frac{1}{4}\left(\frac{x}{x^4+1}+\frac{1}{2y}\right)\le\frac{1}{4}\left(\frac{x}{2x^2}+\frac{1}{2y}\right)=\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}\right)\).
Tương tự rồi cộng vế với vế ta được:
\(\frac{x}{x^4+1+2xy}+\frac{y}{y^4+1+2yz}+\frac{z}{z^4+1+2zx}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{2y}+\frac{1}{2z}+\frac{1}{2z}+\frac{1}{2x}\right)=\frac{1}{4}.3=\frac{3}{4}\left(đpcm\right)\)
Đặt vế trái là P
\(P\le\frac{x}{2x^2+2xy}+\frac{y}{2y^2+2yz}+\frac{z}{2z^2+2zx}=\frac{1}{2\left(x+y\right)}+\frac{1}{2\left(y+z\right)}+\frac{1}{2\left(z+x\right)}\)
\(P\le\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
áp dụng bđt bunhia dạng phân thức ta có
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)≥\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9
(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)
Ta có: \(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\)
\(\ge\frac{\left(x+y+z\right)^2}{3+2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{3+2\left(x^2+y^2+z^2\right)}\)
\(=\frac{\left(x+y+z\right)^2}{3+2}=\frac{\left(x+y+z\right)^2}{5}\)
Mà \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3\)
Nên thay vào ngược dấu
=> ch bt lm
Nói chung khá đơn giản. Em chứng minh bất đẳng thức sau đây là được.
\(\frac{x^2}{1+2yz}=\frac{x^2}{x^2+\left(y^2+z^2+2yz\right)}=\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)
Có thể chứng minnh nó bằng cách: \(f\left(x,y,z\right)=\frac{x^2}{x^2+\left(y+z\right)^2}-\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)
Ta chứng minhL \(f\left(x,y,z\right)\ge f\left(x,\frac{y+z}{2},\frac{y+z}{2}\right)\ge0\) (quy đồng phát là ra nhân tử (y-z)^2 nên hiển nhiên:v)
Tương tự cộng lại. Xong.
Cách Cauchy-SChwarz:
Chứng minh theo trình tự: \(\Sigma\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\Sigma x^2\left[x^2+\left(y+z\right)^2\right]}\ge\frac{3}{5}\)