1 so sánh
A=1/22+1/32+1/42+....+1/20182
B=75%
2
M=32/2.5+32/5.8+.....+32/98.101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
S=6/2*5+6/5*8+...+6/29*32
=6/3*(3/2*5+3/5*8+...+3/29*32)
=2*(1/2-1/5+1/5-1/8+...+1/29-1/32)
=2*(1/2-1/32)=2*15/32
=15/16<1
S=6/2*5+6/5*8+...+6/29*32,c
=6/3*(3/2*5+3/5*8+...+3/29*32)
=2*(1/2-1/5+1/5-1/8+...+1/29-1/32)
=2*(1/2-1/32)
=2*15/32
=15/16<1
Sửa đề: so sánh với 1/2
1/3^2<1/2*3
1/4^2<1/3*4
...
1/80^2<1/79*80
=>1/3^2+1/4^2+...+1/80^2<1/2-1/3+1/3-1/4+...+1/79-1/80=39/80<1/2
Giải:
A=1/22+1/32+1/42+...+1/92
Ta có:
1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
...
1/92<1/8.9
⇒A<1/1.2+1/2.3+1/3.4+...+1/8.9
A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9
A<1/1-1/9
A<8/9
Ta có:
1/22>1/2.3
1/32>1/3.4
1/42>1/4.5
...
1/92>1/9.10
⇒A>1/2.3+1/3.4+1/4.5+...+1/9.10
A>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
A>1/2-1/10
A>2/5
Vậy 2/5<A<8/9 (đpcm)
Chúc bạn học tốt!
a. (75 + 45) : 5 = ?
Cách 1: (75 + 45) : 5
= 120 : 5 = 24
Cách 2: (75 + 45) : 5
= 75 : 5 + 45 : 5
= 15 + 9
= 24
b.(88 – 32) : 8 = ?
Cách 1: (88 - 32) : 8
= 56 : 8 =7
Cách 2: (88 - 32) : 8
= 88 : 8 – 32 : 8
= 11 – 4
= 7
b/ Ta có :
\(M=\frac{3^2}{2.5}+\frac{3^2}{5.8}+....+\frac{3^2}{98.101}\)
\(=3\left(\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{98.101}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{98}-\frac{1}{101}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=3.\frac{99}{202}\)
\(=\frac{297}{202}\)
Vậy....
Câu 1 ý câu đó mình làm đc rồi