Tính độ dài các cạnh của hình bình hành biết rằng hình chiếu của các cạnh kề nhau trên đường chéo lớn bằng 8 và 16, còn đường chéo nhỏ bằng 22.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính độ dài cạnh kề với cạnh có độ dài bằng 4, ta có thể sử dụng định lý Pythagoras. Định lý này cho biết rằng trong một tam giác vuông, bình phương của độ dài cạnh huyền (đường chéo dài nhất) bằng tổng bình phương của độ dài hai cạnh góc vuông.
Trong trường hợp này, ta có độ dài hai đường chéo là 6 và 8. Để tìm độ dài cạnh kề với cạnh có độ dài bằng 4, ta cần tìm độ dài cạnh còn lại của hình bình hành.
Áp dụng định lý Pythagoras, ta có: (độ dài cạnh kề)^2 + (độ dài cạnh kề)^2 = (độ dài đường chéo)^2
Đặt độ dài cạnh kề là x, ta có: x^2 + 4^2 = 6^2
Giải phương trình trên, ta có: x^2 + 16 = 36 x^2 = 36 - 16 x^2 = 20 x = √20
Vậy độ dài cạnh kề với cạnh có độ dài bằng 4 là √20.
Ta có: Bình phương độ dài đường chéo của một hình chữ nhật là: \({5^2} + {8^2} = 25 + 64 = 89\)
Độ dài đường chéo của một hình chữ nhật là: \(\sqrt {89} = 9,43398...\)(dm)
Làm tròn kết quả này đến hàng phần mười, ta được: 9,4 dm
Chú ý: Độ dài đường chéo của một hình chữ nhật bằng căn bậc hai số học của tổng các bình phương độ dài hai cạnh của nó
Xét hình bình hành \(ABCD\)có \(O\)là giao điểm của \(AC\)và \(BD\).
Khi đó \(O\)là trung điểm của \(AC\)và \(BD\).
Độ dài hai đường chéo tỉ lệ với độ dài hai cạnh liên tiếp nên \(\frac{BD}{AC}=\frac{AB}{AD}\Leftrightarrow\frac{DA}{OA}=\frac{AB}{OB}\).
Xét tam giác \(DAB\)và tam giác \(AOB\)có:
\(\widehat{DBA}=\widehat{ABO}\)(góc chung)
\(\frac{DA}{AO}=\frac{AB}{OB}\)(cmt)
Suy ra \(\Delta DAB~\Delta AOB\left(c.g.c\right)\).
suy ra \(\widehat{AOB}=\widehat{DAB}\)(hai góc tương ứng)
Ta có đpcm.
rong hbh ABCD, xét tam giác abc
(1): ac^2 = ab^2 + bc^2- 2.ab.bc.cosB
=> ab^2 + bc^2=ac^2 + 2.ab.bc.cosB
(2): vì da=bc+. da^2 + cd^2 =bc^2 +cd^2
tương tự (1) ta có bc^2 + cd^2 = bd^2+2.bc.cd.cosC
từ (1) và (2), ta có ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 + 2ab.bc.cosB + 2bc.cd.cosC
vì:
- góc B+C=180 => cosC = -cosB
- ab=cd
=>2ab.bc.cosB + 2bc.cd.cosC =0
Vậy => ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 (đpcm)