1+3+194566565547474566475446464665-3+3848575755677665:3=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1/3+1/3^2+1/3^3+1/3^4).3^5+(1/3^5+1/3^6+1/3^7+1/3^8).3^9+.....+(1/3^97+1/3^98+1/3^99+1/3^100).3^101
ính giá trị biểu thức:
(1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 3^5 + (1/3^5 + 1/3^6 + 1/3^7 + 1/3^8) . 3^9 + ... + (1/3^97 + 1/3^98 + 1/3^99 + 1/3^100) . 3^101
Ta có thể thực hiện theo các bước sau:
Bước 1: Nhóm các hạng tử:
Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:
(1/3^n + 1/3^(n+1) + 1/3^(n+2) + 1/3^(n+3)) . 3^(n+4)
Với n = 1, 5, 9, ..., 97.
Bước 2: Tính giá trị từng nhóm:
Xét nhóm thứ nhất:
(1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 3^5
= (1/3 + 1/3^2 + 1/3^3 + 1/3^4) . (3^4 . 3)
= (1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 81
Ta có thể sử dụng công thức khai triển tổng của cấp số nhân để tính giá trị trong ngoặc:
1 + 1/3 + 1/3^2 + 1/3^3 = (1 - (1/3)^4) / (1 - 1/3) = 80/81
Do đó, giá trị của nhóm thứ nhất là:
(80/81) . 81 = 80
Tương tự, ta có thể tính giá trị các nhóm tiếp theo:
Giá trị nhóm thứ hai: (80/81) . 3^4 . 81 = 80 . 3^4
Giá trị nhóm thứ ba: (80/81) . 3^8 . 81 = 80 . 3^8
...
Giá trị nhóm thứ 25: (80/81) . 3^96 . 81 = 80 . 3^96
Bước 3: Cộng các giá trị từng nhóm:
Giá trị của biểu thức là tổng giá trị của các nhóm:
80 + 80 . 3^4 + 80 . 3^8 + ... + 80 . 3^96
= 80 (1 + 3^4 + 3^8 + ... + 3^96)
Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:
Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.
Tổng của cấp số nhân này là:
(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80
Bước 5: Thay giá trị và kết luận:
Thay giá trị tổng vào biểu thức, ta được:
80 (1 + 3^4 + 3^8 + ... + 3^96) = 80 . (1 - 3^100) / -80
= (1 - 3^100)
Vậy, giá trị của biểu thức là 1 - 3^100.
Lưu ý:
Kết quả:
Giá trị của biểu thức là 1 - 3^100.
ềdfđừytretwrerfwrevcreerwaruircewtdyererrrrrrrrrrrrrrrrdbrbr trưewyt ưt rtf gygr frirfy gfyrgfyur uỷ gyurg rfuy frg egfyryfyrty trg r rei eoer7 87re r7ye7i t 87rt 7 t ryigr yyrggfygfhdg gfhg gf fgg jdfgjh f fggfgfg jffg jfg f gfg fjhg hjfg gfsdj fgdj gfdjfgdjhf gjhg f gfg fk f fjk hjkfghjkfg h hjyjj ỵthj
\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)
Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)
(101-5):4+1=25(số hạng)
=>A=25.(3+32+33+34)=25.120=3000
a)Nhận xét
\(\dfrac{n^3+1}{n^3-1}=\dfrac{\left(n+1\right)\left(n^2-n+1\right)}{\left(n-1\right)\left(n^2+n+1\right)}=\dfrac{\left(n+1\right)\left[\left(n-0,5\right)^2+0;75\right]}{\left(n-1\right)\left[\left(n+0,5\right)^2+0,75\right]}\)
Áp dụng công thức trên:
\(A=\dfrac{2^3+1}{2^3-1}.\dfrac{3^3+1}{3^3-1}....\dfrac{9^3+1}{9^3-1}\)
\(=\dfrac{\left(2+1\right)\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right)\left[\left(2+0,5\right)^2+0,75\right]}.\dfrac{\left(3+1\right)\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right)\left[\left(3+0,5\right)^2+0,75\right]}...\dfrac{\left(9+1\right)\left[\left(9-0,5\right)^2+0,75\right]}{\left(9-1\right)\left[\left(9+0,5\right)^2+0,75\right]}\)
\(=\dfrac{3\left(1,5^2+0,75\right)}{\left(2,5^2+0,75\right)}.\dfrac{4\left(2,5^2+0,75\right)}{2\left(3,5^2+0,75\right)}...\dfrac{10\left(8,5^2+0,75\right)}{8\left(9,5^2+0,75\right)}\)
\(=\dfrac{3.4....10}{1.2.....8}.\dfrac{1,5^2+0,75}{9,5^2+0,75}\)
\(=\dfrac{9.10}{2}.\dfrac{3}{91}\)
\(=\dfrac{3}{2}.\dfrac{90}{91}< \dfrac{3}{2}\)
\(\Rightarrowđpcm\)
b) Làm tương tự
Tính toán giá trị biểu thức:
Bước 1: Phân tích biểu thức:
Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:
(3^(n-1)/3 + 3^n/3 + 3^(n+1)/3 + 3^(n+2)/3) . 3^(n+4)
Với n = 1, 5, 9, ..., 97.
Bước 2: Tính giá trị từng nhóm:
Xét nhóm thứ nhất:
(3^0/3 + 3^1/3 + 3^2/3 + 3^3/3) . 3^5
= (1 + 3 + 3^2 + 3^3) . (3^4 . 3)
= (1 + 3 + 3^2 + 3^3) . 81
Ta có thể sử dụng công thức khai triển tổng của cấp số nhân để tính giá trị trong ngoặc:
1 + 3 + 3^2 + 3^3 = (1 - 3^4) / (1 - 3) = 80
Do đó, giá trị của nhóm thứ nhất là:
(80) . 81 = 6480
Tương tự, ta có thể tính giá trị các nhóm tiếp theo:
Giá trị nhóm thứ hai: (80) . 3^4 . 81 = 6480 . 3^4
Giá trị nhóm thứ ba: (80) . 3^8 . 81 = 6480 . 3^8
...
Giá trị nhóm thứ 25: (80) . 3^96 . 81 = 6480 . 3^96
Bước 3: Cộng các giá trị từng nhóm:
Giá trị của biểu thức là tổng giá trị của các nhóm:
6480 + 6480 . 3^4 + 6480 . 3^8 + ... + 6480 . 3^96
= 6480 (1 + 3^4 + 3^8 + ... + 3^96)
Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:
Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.
Tổng của cấp số nhân này là:
(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80
Bước 5: Thay giá trị và kết luận:
Thay giá trị tổng vào biểu thức, ta được:
6480 (1 + 3^4 + 3^8 + ... + 3^96) = 6480 . (1 - 3^100) / -80
= -81(1 - 3^100)
Vậy, giá trị của biểu thức là -81(1 - 3^100).
Lưu ý:
Kết quả:
Giá trị của biểu thức là -81(1 - 3^100).
Chúc bạn thành công!
K = (\(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\))+...+\(\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
\(=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^1+3^2+3^3+3^4\right)\)
\(=120+...+120\)(Có 25 số 120)
\(=25.120\)
\(=300\)
vậy ...
\(=\dfrac{3^5}{3}+\dfrac{3^5}{3^2}+\dfrac{3^5}{3^3}+\dfrac{3^5}{3^4}+\dfrac{3^9}{3^5}+\dfrac{3^9}{3^6}+\dfrac{3^9}{3^7}+\dfrac{3^9}{3^8}\\ =2\left(3^4+3^3+3^2+3\right)\)
\(=\left(\dfrac{3^5}{3}+\dfrac{3^5}{3^2}+\dfrac{3^5}{3^3}+\dfrac{3^5}{3^4}\right)+\left(\dfrac{3^9}{3^5}+\dfrac{3^9}{3^6}+\dfrac{3^9}{3^5}+\dfrac{3^9}{3^8}\right)\)
\(=\left(3^4+3^3+3^2+3\right)+\left(3^4+3^3+3^2+3\right)\)
\(=2\left(3^4+3^3+3^2+3\right)\)
\(=2\left(81+27+9+3\right)\)
\(=2\left(120\right)\)
\(=240\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
Hà Anh nói đúng đấy, câu này dễ thế mà cũng ko giải được.Có mà cậu bịa ra câu này ý.