K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

- Xin phép giải lại cho HOÀN CHỈNH

ĐKXĐ : \(\left\{{}\begin{matrix}a-\sqrt{a}\ne0\\a-1\ne0\\a\ge0\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}\sqrt{a}\left(\sqrt{a}-1\right)\ne0\\\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\ne0\\a\ge0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\sqrt{a}\ne0\\\sqrt{a}-1\ne0\\a\ge0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}a\ne0\\a\ne1\\a\ge0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

Ta có : \(F=\left(\frac{1}{\sqrt{a}-1}+\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)

=> \(F=\left(\frac{1}{\sqrt{a}-1}+\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

=> \(F=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}-1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

=> \(F=\left(\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

=> \(F=\left(\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}-1}\right)\)

=> \(F=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}=\frac{\sqrt{a}+1}{\sqrt{a}}\)

Vậy ...

3 tháng 8 2020

đkxd a>=0 ; a khác 1

~ quên ~

20 tháng 6 2017

Không nêu rõ y/c của đề à bạn

10 tháng 8 2017

\(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{a-1-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

10 tháng 8 2017

\(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right).\)

\(A=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(A=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)\)

\(A=\frac{\sqrt{a}-2}{\sqrt{a}}\)

2 tháng 8 2017

Điều kiện : a> 0 ; a khác 1

\(A=\frac{\left(\sqrt{a}\right)^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}\right)^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{2a+2}{a-1}\right)\)

\(A=\frac{2\sqrt{a}}{\sqrt{a}}+\frac{2\left(a+1\right)}{\sqrt{a}}=2+\frac{2\sqrt{a}\left(a+1\right)}{a}\)