Tìm GTNN của biểu thức :
B=(3x+27)20+(y-1)2+2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Rightarrow\left(2x-1\right)^2+\left|y-2\right|\ge0\forall x,y\)
\(\Rightarrow\left(2x-1\right)^2+\left|y-2\right|+2020\ge2020\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(2x-1\right)^2=0\\\left|y-2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=2\end{cases}}\)
Vậy GTNN của B bằng 2020 khi x = 1/2,y = 2
Bài 1:
a. Ta thấy:
$|2x+1|\geq 0$ với mọi $x$
$|x-y+1|\geq 0$ với mọi $x,y$
$\Rightarrow A=|2x+1|+|x-y+1|\geq 0$ với mọi $x,y$
Vậy gtnn của $A$ là $0$. Giá trị này đạt tại $2x+1=x-y+1=0$
$\Leftrightarrow x=\frac{-1}{2}; y=\frac{1}{2}$
b. Áp dụng BĐT quen thuộc:
$|a|+|b|\geq |a+b|$ ta có:
$B=|x+2|+\frac{1}{2}|2x-1|=|x+2|+|x-\frac{1}{2}|$
$=|x+2|+|\frac{1}{2}-x|$
$\geq |x+2+\frac{1}{2}-x|=\frac{5}{2}$
Vậy gtnn của $B$ là $\frac{5}{2}$. Giá trị này đạt tại $(x+2)(\frac{1}{2}-x)\geq 0$
$\Leftrightarrow -2\leq x\leq \frac{1}{2}$
Bài 2:
Áp dụng BĐT quen thuộc:
$|a|-|b|\leq |a-b|$
$C=|3x+2|-|2020-3x|=|3x+2|-|3x-2020|$
$\leq |3x+2-(3x-2020)|=2022$
Vậy gtln của $C$ là $2022$
Giá trị này đạt tại $3x-2020\geq 0\Leftrightarrow x\geq \frac{2020}{3}$
\(P=\left(3x-y\right)^2+\left(y-2020\right)^{600}\)
+Có: \(\left(3x-y\right)^2\ge0với\forall x\)
\(\left(y-2020\right)^{600}\ge0với\forall x\)
\(\Rightarrow\left(3x-y\right)^2+\left(y-2020\right)^{600}\ge0\\ \Leftrightarrow P\ge0\)
+Dấu "=" xảy ra khi \(\left(y-2020\right)^{600}=0\Leftrightarrow y=2020\); \(\left(3x-2020\right)^2=0\Leftrightarrow x=\frac{2020}{3}\)
VẬy...
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
Ta có |2-3x| >=0 với mọi x
=> 2020+|2-3x| >=2020
Dấu "=" xảy ra <=> |2-3x|=0
<=> 3x=2
<=> \(x=\frac{2}{3}\)
Vậy MinA=2020 đạt được khi \(x=\frac{2}{3}\)
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Bài làm:
Ta có: \(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\\\left(y-1\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)
\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2\ge0\left(\forall x,y\right)\)
\(\Rightarrow B\ge2020\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(3x+27\right)^{20}=0\\\left(y-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Vậy \(Min_B=2020\Leftrightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Ta có: \(\left(3x+27\right)^{20}\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
=> \(\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\forall x;y\)
=> \(B\ge2020\)
Vậy GTNN của B là 2020 <=> x=-9, y=1