K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

Bài làm:

Ta có: \(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\\\left(y-1\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)

\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2\ge0\left(\forall x,y\right)\)

\(\Rightarrow B\ge2020\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(3x+27\right)^{20}=0\\\left(y-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)

Vậy \(Min_B=2020\Leftrightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)

Ta có: \(\left(3x+27\right)^{20}\ge0\forall x\)

             \(\left(y-1\right)^2\ge0\forall y\)

=> \(\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\forall x;y\)

=> \(B\ge2020\)

Vậy GTNN của B là 2020 <=> x=-9, y=1

5 tháng 3 2021

Vì \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Rightarrow\left(2x-1\right)^2+\left|y-2\right|\ge0\forall x,y\)

\(\Rightarrow\left(2x-1\right)^2+\left|y-2\right|+2020\ge2020\forall x,y\)

Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(2x-1\right)^2=0\\\left|y-2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=2\end{cases}}\)

Vậy GTNN của B bằng 2020 khi x = 1/2,y = 2

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Bài 1:

a. Ta thấy:

$|2x+1|\geq 0$ với mọi $x$

$|x-y+1|\geq 0$ với mọi $x,y$

$\Rightarrow A=|2x+1|+|x-y+1|\geq 0$ với mọi $x,y$

Vậy gtnn của $A$ là $0$. Giá trị này đạt tại $2x+1=x-y+1=0$

$\Leftrightarrow x=\frac{-1}{2}; y=\frac{1}{2}$

b. Áp dụng BĐT quen thuộc:

$|a|+|b|\geq |a+b|$ ta có:

$B=|x+2|+\frac{1}{2}|2x-1|=|x+2|+|x-\frac{1}{2}|$

$=|x+2|+|\frac{1}{2}-x|$

$\geq |x+2+\frac{1}{2}-x|=\frac{5}{2}$

Vậy gtnn của $B$ là $\frac{5}{2}$. Giá trị này đạt tại $(x+2)(\frac{1}{2}-x)\geq 0$

$\Leftrightarrow -2\leq x\leq \frac{1}{2}$

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Bài 2:

Áp dụng BĐT quen thuộc:

$|a|-|b|\leq |a-b|$

$C=|3x+2|-|2020-3x|=|3x+2|-|3x-2020|$

$\leq |3x+2-(3x-2020)|=2022$

Vậy gtln của $C$ là $2022$

Giá trị này đạt tại $3x-2020\geq 0\Leftrightarrow x\geq \frac{2020}{3}$

 

20 tháng 5 2020

\(P=\left(3x-y\right)^2+\left(y-2020\right)^{600}\)

+Có: \(\left(3x-y\right)^2\ge0với\forall x\)

\(\left(y-2020\right)^{600}\ge0với\forall x\)

\(\Rightarrow\left(3x-y\right)^2+\left(y-2020\right)^{600}\ge0\\ \Leftrightarrow P\ge0\)

+Dấu "=" xảy ra khi \(\left(y-2020\right)^{600}=0\Leftrightarrow y=2020\); \(\left(3x-2020\right)^2=0\Leftrightarrow x=\frac{2020}{3}\)

VẬy...

NV
7 tháng 1 2021

\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)

\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

\(\Rightarrow x-y=1\Rightarrow P=1\)

\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)

\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)

\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)

28 tháng 4 2020

Ta có |2-3x| >=0 với mọi x

=> 2020+|2-3x| >=2020 

Dấu "=" xảy ra <=> |2-3x|=0

<=> 3x=2

<=> \(x=\frac{2}{3}\)

Vậy MinA=2020 đạt được khi \(x=\frac{2}{3}\)

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn