Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Rightarrow\left(2x-1\right)^2+\left|y-2\right|\ge0\forall x,y\)
\(\Rightarrow\left(2x-1\right)^2+\left|y-2\right|+2020\ge2020\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(2x-1\right)^2=0\\\left|y-2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=2\end{cases}}\)
Vậy GTNN của B bằng 2020 khi x = 1/2,y = 2
Bài 1:
a. Ta thấy:
$|2x+1|\geq 0$ với mọi $x$
$|x-y+1|\geq 0$ với mọi $x,y$
$\Rightarrow A=|2x+1|+|x-y+1|\geq 0$ với mọi $x,y$
Vậy gtnn của $A$ là $0$. Giá trị này đạt tại $2x+1=x-y+1=0$
$\Leftrightarrow x=\frac{-1}{2}; y=\frac{1}{2}$
b. Áp dụng BĐT quen thuộc:
$|a|+|b|\geq |a+b|$ ta có:
$B=|x+2|+\frac{1}{2}|2x-1|=|x+2|+|x-\frac{1}{2}|$
$=|x+2|+|\frac{1}{2}-x|$
$\geq |x+2+\frac{1}{2}-x|=\frac{5}{2}$
Vậy gtnn của $B$ là $\frac{5}{2}$. Giá trị này đạt tại $(x+2)(\frac{1}{2}-x)\geq 0$
$\Leftrightarrow -2\leq x\leq \frac{1}{2}$
Bài 2:
Áp dụng BĐT quen thuộc:
$|a|-|b|\leq |a-b|$
$C=|3x+2|-|2020-3x|=|3x+2|-|3x-2020|$
$\leq |3x+2-(3x-2020)|=2022$
Vậy gtln của $C$ là $2022$
Giá trị này đạt tại $3x-2020\geq 0\Leftrightarrow x\geq \frac{2020}{3}$
C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé
E = | 3x + 1 | + 2| x - y | + 1
\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)
=> MinE = 1 <=> x = y = -1/3
F = 5| x - 1 | + 1/2| 2x + y | + 2020
\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
=> MinF = 2020 <=> x = 1 ; y = -2
C = 2| x - 1 | + | 2x + 3 | - 2020
= | 2x - 2 | + | 2x + 3 | - 2020
= | 2x - 2 | + | -( 2x + 3 ) | - 2020
= | 2x - 2 | + | -2x - 3 | - 2020
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 2 )( -2x - 3 ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)
=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)
D = | 3 - 2x | + 2| 1 - x | + 1/2
= | 3 - 2x | + | 2 - 2x | + 1/2
= | -( 3 - 2x ) | + | 2 - 2x | + 1/2
= | 2x - 3 | + | 2 - 2x | + 1/2
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 3 )( 2 - 2x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)
=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)
Ta có : \(\left(x-1\right)^2\ge0\)
\(\left|y-5\right|\ge0\)
\(\sqrt{z-4}\ge0\)
Để có được \(Min_A\Leftrightarrow\hept{\begin{cases}x-1=0\\y-5=0\\z-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=5\\z=4\end{cases}}\)
\(\Leftrightarrow A=1^2+0+0+0+2020=2021\)
Vậy \(Min_A=2021\Leftrightarrow\left(x;y;z\right)=\left(1;5;4\right)\)
Bài 1 :
Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)
\(\left|y-\frac{1}{2}\right|\ge0\forall y\)
\(\left(z-2\right)^2\ge0\forall z\)
\(\Rightarrow A\ge2018\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy........
Bài 2 :
Lý luận tương tự câu 1) ta có :
\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)
Thay x; y; z vào P ta có :
\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)
\(P=1-1+0\)
\(P=0\)
\(P=3x^2+y^2-8x+2xy+16\)
\(P=\left(x^2+2xy+y^2\right)+\left(2x^2-8x+8\right)+8\)
\(P=\left(x+y\right)^2+2\left(x-2\right)^2+8\ge8\)
Vậy GTNN của P=8 <=> \(\orbr{\begin{cases}x+y=0\\x-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}y=-2\\x=2\end{cases}}\)
\(P=\left(3x-y\right)^2+\left(y-2020\right)^{600}\)
+Có: \(\left(3x-y\right)^2\ge0với\forall x\)
\(\left(y-2020\right)^{600}\ge0với\forall x\)
\(\Rightarrow\left(3x-y\right)^2+\left(y-2020\right)^{600}\ge0\\ \Leftrightarrow P\ge0\)
+Dấu "=" xảy ra khi \(\left(y-2020\right)^{600}=0\Leftrightarrow y=2020\); \(\left(3x-2020\right)^2=0\Leftrightarrow x=\frac{2020}{3}\)
VẬy...