K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 8 2020

1.

\(\left(1+a\right)^2=\left(1.1+\sqrt{\frac{a}{b}}.\sqrt{ab}\right)^2\le\left(1+\frac{a}{b}\right)\left(1+ab\right)=\frac{\left(a+b\right)\left(1+ab\right)}{b}\)

\(\Rightarrow\frac{1}{\left(1+a\right)^2}\ge\frac{b}{\left(a+b\right)\left(1+ab\right)}\)

\(\left(1+b\right)^2\le\frac{\left(a+b\right)\left(1+ab\right)}{a}\Rightarrow\frac{1}{\left(1+b\right)^2}\ge\frac{a}{\left(a+b\right)\left(1+ab\right)}\)

\(\Rightarrow\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{a}{\left(a+b\right)\left(1+ab\right)}+\frac{b}{\left(a+b\right)\left(1+ab\right)}=\frac{1}{1+ab}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=1\)

2.

\(P=\sqrt{\frac{a^2}{a^4+3}}+\sqrt{\frac{b^2}{b^4+3}}\le\sqrt{2\left(\frac{a^2}{a^4+3}+\frac{b^2}{b^4+3}\right)}\)

Đặt \(\left(a^2;b^2\right)=\left(x;y\right)\Rightarrow xy=1\)

\(Q=\frac{x}{x^2+3}+\frac{y}{y^2+3}=\frac{x}{x^2+3}+\frac{x}{3x^2+1}-\frac{1}{2}+\frac{1}{2}\)

\(Q=\frac{-\left(x-1\right)^2\left(3x^2-2x+3\right)}{2\left(x^2+3\right)\left(3x^2+1\right)}+\frac{1}{2}\le\frac{1}{2}\)

\(\Rightarrow P\le\sqrt{2Q}\le1\)

\(P_{max}=1\) khi \(a=b=1\)

1 tháng 3 2020

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

1 tháng 3 2020

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.

11 tháng 6 2019

1.undefined

3 tháng 6 2020

Ta có: \(a^2-ab+3b^2+1=\left(a^2-2ab+b^2\right)+ab+\left(b^2+1\right)+b^2\)

\(=\left(a-b\right)^2+ab+\left(b^2+1\right)+b^2\ge ab+2b+b^2\)

\(=b\left(a+b+2\right)\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{1}{\sqrt{b\left(a+b+2\right)}}\)(1)

Tương tự: \(\frac{1}{\sqrt{b^2-bc+3c^2+1}}\le\frac{1}{\sqrt{c\left(b+c+2\right)}}\)(2); \(\frac{1}{\sqrt{c^2-ca+3a^2+1}}\le\frac{1}{\sqrt{a\left(c+a+2\right)}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3) và sử dụng AM - GM kết hợp liên tục BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta được:

\(P\le\frac{1}{\sqrt{b\left(a+b+2\right)}}+\frac{1}{\sqrt{c\left(b+c+2\right)}}+\frac{1}{\sqrt{a\left(c+a+2\right)}}\)

\(=\Sigma\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)\(\le\Sigma\left(\frac{1}{4b}+\frac{1}{a+b+2}\right)\)(AM - GM)

\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left(\frac{1}{a+b+2}\right)\)

\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}\right)+\frac{1}{2}\right]\)

\(\le\frac{3}{4}+\text{​​}\left[\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\text{​​}\Sigma\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)

\(=\frac{3}{4}+\text{​​}\left[\frac{3}{8}+\text{​​}\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]\le\frac{3}{4}+\frac{3}{8}+\frac{3}{8}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

3 tháng 6 2020

Dòng thứ 10 sửa lại cho mình là \(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{2}\right)\right]\)

Do olm có lỗi là mỗi lần bấm dấu ngoặc là số nó tự động nhảy ra ngoài

10 tháng 1 2016

\(x^4+\sqrt{x^2+3}=3\)
\(\Leftrightarrow x^4-1+\sqrt{x^2+3}-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\frac{x^2+3-4}{\sqrt{x^2+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\frac{\left(x+1\right)\left(x-1\right)}{\sqrt{x^2+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1+\frac{1}{\sqrt{x^2+3}+2}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)vì \(x^2+1+\frac{1}{\sqrt{x^2+3}+2}>0\)
\(\Leftrightarrow\int^{x=1}_{x=-1}\)
\(a+b+c+ab+ac+bc=6abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x;y;z>0\right)\)
Ta được: \(x+y+z+xy+xz+yz=6\)
Ta đi chứng minh: \(x^2+y^2+z^2\ge3\)
Có: \(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)(Cô-si)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1)
Dấu "=" xảy ra <=> x=y=z=1
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)(Cô-si)
\(\Rightarrow2x^2+2y^2+2z^2\ge2\left(xy+xz+yz\right)\)(2)
Dấu "=" xảy ra <=> x=y=z
cộng vế với vế của (1) và (2) 
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra <=> x=y=z=1<=>a=b=c=1
Nhớ tick nhé
 

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

11 tháng 12 2019

ai làm đi

14 tháng 10 2022

1: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

=>(x+y)^2>=4xy

=>(x-y)^2>=0(luôn đúng)

2: \(\Leftrightarrow a^3+b^3-a^2b-ab^2>=0\)

=>a^2(a-b)-b^2(a-b)>=0

=>(a-b)^2(a+b)>=0(luôn đúng)