CMR :
( a + b + c + d )^2 \(\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\) với a,b,c,d thuộc R
Chỉ cần hướng dẫn thui ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c+d)2\(\ge\frac{8}{3}\)(ab+ac+ad+bc+bd+cd)
<=>(a+b)2+2(a+b)(c+d)+(c+d)2\(\ge\).....
<=>a2+b2+c2+d2+2(ab+ac+ad+bc+bd+cd)\(\ge\)....
<=>3a2+3b2+3c2+3d2+6(ab+ac+ad+bc+bd+cd)\(\ge\)8(ab+ac+ad+bc+bd+cd)
<=> 3a2+3b2+3c2+3d2-2ab -2ac-2bc-2ad-2bd-2cd\(\ge\)0
<=> (a2-2ab+b2)+(a2-ac+c2)+(a2-2ad+d2)+(b2-2bc+c2)+(b2-2bd+d2)+(c2-2cd+d2)>=0
<=> (a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2>=0 (DPCM)
Dau ''='' xay ra khi a=b=c=d
BĐT\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2+6\left(ab+bc+cd+da+bd+ca\right)\ge8\left(ab+bc+cd+da+bd+ca\right)\)
\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2-2\left(ab+bc+cd+da+bd+ca\right)\ge0\) (*)
Ta có: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd\)
\(d^2+a^2\ge2da;b^2+d^2\ge2bd;c^2+a^2\ge2ca\)
Cộng theo vế các BĐT trên suy ra \(3a^2+3b^2+3c^2+3d^2\ge2\left(ab+bc+cd+da+bd+ca\right)\)
Do vậy BĐT (*) đúng hay ta có đpcm.
P/s: EM còn khá dốt BĐT,mong được các anh chị chỉ bảo cho ạ!
Cần cù bù thông minh ^^
\(BDT\Leftrightarrow\frac{1}{9}\left(-3a+b+c+d\right)^2+\frac{2}{9}\left(2b-c-d\right)^2+\frac{2}{3}\left(c-d\right)^2\ge0\)
Hihi mình phân tích hơi nham nhở thông cảm nha :(
Ta có : \(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{2}{3}\)
\(\Leftrightarrow3\left(a+b+c+d\right)^2\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
Thấy \(a+b+c+d=0\Rightarrow\left\{{}\begin{matrix}a=-b-c-d\\b=-a-c-d\\c=-a-b-d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab-cd=-b^2-bc-bd-cd=\text{-(b + c) (b + d)=(a+d)(b+d)}\\bc-ad=-ca-c^2-cd-ad=\text{-(a + c) (c + d)=(b+d)(c+d)}\\ca-bd=-a^2-ab-ad-bd=\text{-(a + b) (a + d)}=\left(c+d\right)\left(a+d\right)\end{matrix}\right.\)\(\Rightarrow\)x=(a+d)(b+d)(c+d)
Ta có: a+b+c+d=0
\(\Leftrightarrow\) c = -(a+b+c+d)
Nên:
Xét hiệu: ab - cd = ab+d(a+b+d)
\(\Leftrightarrow\) ab - cd = ab+ad+bd+d2
\(\Leftrightarrow\) ab - cd = a(b+d)+d(b+d)
\(\Leftrightarrow\) ab - cd = (b+d)(a+d) (1)
Xét hiệu: bd - ac = bd+a(a+b+d)
\(\Leftrightarrow\) bd - ac = bd+a2+ab+ad
\(\Leftrightarrow\) bd - ac =d(a+b)+a(a+b)
\(\Leftrightarrow\) bd - ac = (a+b)(a+d) (2)
Xét hiệu: ad - bc = ad+b(a+b+d)
\(\Leftrightarrow\) ad - bc = ad+ab+b2+bd
\(\Leftrightarrow\) ad - bc = a(b+d)+b(b+d)
\(\Leftrightarrow\)ad - bc = (a+b)(b+d) (3)
Từ (1),(2),(3) ta có:
\(\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)\) = (b+d)(a+d)(a+b)(a+d)(a+b)(b+d)
\(\Leftrightarrow\) (ab-cd)(bd-ac)(ad-bc) = (a+b)2.(b+d)2.(a+d)2
\(\Leftrightarrow\) (ab-cd)(bd-ac)(ad-bc) = [(a+b)(b+d)(a+d)]2
\(\Leftrightarrow\) \(\sqrt{\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)}\) = \(\sqrt{\left[\left(a+b\right)\left(b+d\right)\left(a+d\right)\right]^2}\)
\(\Leftrightarrow\sqrt{\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)}\) = |(a+b)(b+d)(a+d)| (4)
Mà a,b,c,d là các số hữu tỉ
\(\Rightarrow\) |(a+b)(b+d)(a+d)| là số hữu tỉ (5)
Từ (4) và (5) chứng tỏ \(\sqrt{\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)}\) là số hữu tỉ
a + b + c + d = 0
=> a = - b - c - d ; b = - a - c - d; c = - a - b - d
+) a = - b- c - d => ab = -b2 - bc - bd => ab - cd = - b2 - bc - bd - cd = -b(b + c) - d(b + c) = -(b +d)(b +c)
+) b = - a - c - d => bc = -ac - c2 - cd => bc - ad = -ac - c2 - cd - ad = -c(a + c) - d(a+c) = - (c +d)(a+c)
+) c = -a - b - d => ca = -a2 - ab - ad => ca - bd = -a2 - ab - ad - bd = - (a+b).(a+ d)
=> (ab - cd).(bc - ad).(ca - bd) = - (b +d).(b +c).(c+d)(a+c)(a+b)(a+d)
Vì a+ b + c + d = 0 => a + d = - (b + c) và b + d = - (a +c); c+d = - (a + b)
=> (ab - cd).(bc - ad).(ca - bd) = (a+ b)2. (b +c)2. (c +a)2
=> \(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}=\sqrt{\left(a+b\right)^2.\left(b+c\right)^2\left(c+a\right)^2}=\left|a+b\right|.\left|b+c\right|\left|c+a\right|\)
là số hữu tỉ với a; b; c;d là số hữu tỉ
Bài này xoay quanh hằng đẳng thức sau: \(x^2+xa+xb+ab=\left(x+a\right)\left(x+b\right)\).
Thực vậy, theo giả thiết \(-d=a+b+c\) nên ta có \(ab-cd=ab+c\left(a+b+c\right)=\left(c+a\right)\left(c+b\right).\)
Tương tự, \(bc-ad=bc+a\left(a+b+c\right)=\left(a+b\right)\left(a+c\right),\)
\(ca-bd=ca+b\left(a+b+c\right)=\left(b+a\right)\left(b+c\right).\)
Do đó \(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}=\sqrt{\left(c+a\right)\left(c+b\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là một số hữu tỉ.
Ta có :
\(3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\)
\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge\frac{2}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Rightarrow\left(a+b+c+d\right)^2=a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\)
\(\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\left(đpcm\right)\)
\(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)\)\(+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) ( đúng )
=> Đpcm