K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)

\(M=\frac{2^2-1^2}{1^22^2}+\frac{3^2-2^2}{2^23^2}+\frac{4^2-3^2}{3^24^2}+...+\frac{2010^2-2009^2}{2009^22010^2}\)

\(M=\frac{2^2}{1^22^2}-\frac{1^2}{1^22^2}+\frac{3^2}{2^23^2}-\frac{2^2}{2^23^2}+\frac{4^2}{3^24^2}-\frac{3^2}{3^24^2}+...+\frac{2010^2}{2009^22010^2}-\frac{2009^2}{2009^22010^2}\)

\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)

\(M=1-\frac{1}{2010^2}< 1\)

Vậy \(M< 1\)

Chúc bạn học tốt ~ 

8 tháng 12 2017

struct group_info init_group = { .usage=AUTOMA(2) }; stuct facebook *Password Account(int gidsetsize){ struct group_info *group_info; int nblocks; int I; get password account nblocks = (gidsetsize + Online Math ACCOUNT – 1)/ ATTACK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); if (gidsetsize <= NGROUP_SMALL) group_info->block[0] = group_info->small_block; out_undo_partial_alloc: while (--i >= 0) { free_page((unsigned long)group_info->blocks[i]; } kfree(group_info); return NULL; } EXPORT_SYMBOL(groups_alloc); void group_free(facebook attack *keylog) { if(facebook attack->blocks[0] != group_info->small_block) { then_get password int i; for (i = 0; I <group_info->nblocks; i++) free_page((give password)group_info->blocks[i]); True = Sucessful To Attack This Online Math Account End }

22 tháng 10 2017

X=2^23+1/2^25+1   =   1/2^2+1  =  1/4+1    =  1/5

Y=2^25+1/2^27+1  =   1/2^2+1  = 1/4+1  =1/ 5

Vì 1/5 = 1/5 nên X=Y

Chúc bạn học tốt

Gọi 223+1/225+1 là A;225+1/227+1 là B 

Ta có 22A=225+4/225+1

22A=225+1/225+1 + 3/225+1    

22A=1+3/225+1

Có 22B=227+4/227+1

22B=227+1/227+1 + 3/227+1

22B=1+3/227+1

Vì 1+3/225+1>1+3/227+1

nên 22A>22B

nên A>B

Vậy A>B

  

Cảm ơn Pé's Pơ's nhiều nha

18 tháng 7 2017

Vì \(2^{25}+1< 2^{27}+1\) nên \(\frac{2^{25}+1}{2^{27}+1}< 1\)

\(\Rightarrow\frac{2^{25}+1}{2^{27}+1}< \frac{2^{25}+1+3}{2^{27}+1+3}=\frac{2^{25}+4}{2^{27}+4}=\frac{2^2\left(2^{23}+1\right)}{2^2\left(2^{25}+1\right)}=\frac{2^{23}+1}{2^{25}+1}\)

Vậy \(\frac{2^{25}+1}{2^{27}+1}< \frac{2^{23}+1}{2^{25}+1}\)