K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

\(ĐKXĐ:-1\le a\le1\)

Đặt \(A=\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)

\(\Leftrightarrow A^2=a+2\sqrt{a-1}+a-2\sqrt{a-1}+2\sqrt{\left(a+2\sqrt{a-1}\right)\left(a-2\sqrt{a-1}\right)}\)

\(\Leftrightarrow A^2=2a+2\sqrt{a^2-4\left(a-1\right)}\)

\(\Leftrightarrow A^2=2a+2\sqrt{a^2-4a+4}\)

\(\Leftrightarrow A^2=2a+2\sqrt{\left(a-2\right)^2}\)

\(\Leftrightarrow A^2=2a+2\left(a-2\right)\)

\(\Leftrightarrow A^2=2a+2a-4\)

\(\Leftrightarrow A^2=4a-4\)

\(\Leftrightarrow A=2\sqrt{a-1}\)

10 tháng 8 2020

\(A=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)

\(A=\sqrt{a-1}+1+1-\sqrt{a-1}\) (  DO: a < 2 - gt => \(1>\sqrt{a-1}\))

\(A=2\)

Vậy A = 2.

10 tháng 8 2020

\(B=\sqrt{\left(\sqrt{2x-1}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2x-1}-\sqrt{2}\right)^2}\)

\(B=\sqrt{2x-1}+\sqrt{2}-\left(\sqrt{2}-\sqrt{2x-1}\right)\)     

(     DO: \(x< \frac{3}{2}\)nên \(2>2x-1\)=> \(\sqrt{2}>\sqrt{2x-1}\))

\(=>B=2\sqrt{2x-1}\)

Vậy \(B=2\sqrt{2x-1}\)

30 tháng 9 2018

Trên olm rất ít người học lớp 9 dùng , bạn có thể lên Hh để các thầy cô giảng cho nhé !

30 tháng 9 2018

con cac 

8 tháng 7 2019

a, =\(\sqrt{\left[\left(\sqrt{3}\right)^2+2.\sqrt{3}.2+2^2\right]\left(a-1\right)^2}\)

=\(\sqrt{\left(\sqrt{3}+2\right)^2\left(a-1\right)^2}\)

=\(\left(\sqrt{3}+2\right)\left|a-1\right|\)

8 tháng 7 2019

A=\(\sqrt{\left(a-1\right)+2\sqrt{a-1}+1}+\sqrt{\left(a-1\right)-2\sqrt{a-1}+1}\)

A=\(\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}+1\right)^2}\)

A=\(\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)

+Với a<2 thì a-1<1 => \(\sqrt{a-1}< 1\)

khi đó A=\(\left(\sqrt{a-1}+1\right)-\left(\sqrt{a-1}-1\right)\)= 2

24 tháng 9 2020

1) \(VT=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}=VP\)(ĐPCM)

2) \(VT=\text{[}\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\text{]}.\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)

\(=\frac{\left(a+b-\sqrt{ab}-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}=\frac{\left(a-b\right)^2}{\left(a-b\right)^2}=1=VP\)(ĐPCM)

4) \(VT=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)(ĐPCM)

30 tháng 7 2019

\(a,\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)=\left(1+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1^2-\sqrt{a}^2=1-a\)

\(b,\left(2-\frac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)=\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2-\frac{-\sqrt{a}\left(\sqrt{b}-5\right)}{\sqrt{b}-5}\right)\)

\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)

\(c,\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)=\left(3+\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\right)\left(3-\frac{\sqrt{a}\left(3\sqrt{a}+1\right)}{3\sqrt{a}+1}\right)\)

\(=\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=3^2-\sqrt{a}^2=3-a\)

\(d,\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}+a}{1+\sqrt{a}}\right)=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(\sqrt{a}+2\right)\left(2-\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)

27 tháng 8 2018

a)  ĐK:  \(0< a< 1\)

\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(\sqrt{1+a}-\sqrt{1-a}\right)\left(\sqrt{1+a}+\sqrt{1-a}\right)}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)

27 tháng 8 2018

\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)

b)  Xét:  \(Q^3-Q=\left(a-1\right)^3-\left(a-1\right)=\left(a-1\right)^2\left(a-1-1\right)=\left(a-1\right)^2\left(a-2\right)\)

Do  \(a< 1\)=>  \(a-2< 0\) và   \(a-1< 0\) 

nên \(\left(a-1\right)^2\left(a-2\right)< 0\)

=>  \(Q^3-Q< 0\)

<=> \(Q^3< Q\)

6 tháng 8 2017

Đề là \(P=\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{1-a}{\sqrt{1-a^2}-1+a}\)

\(P=\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{1-a}{\sqrt{1-a^2}-1+a}\)

\(=\frac{1+\sqrt{a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{1-a}{\sqrt{\left(1-a\right)\left(1+a\right)}-\left(1-a\right)}\)

\(=\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\)

\(=\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\)

\(=\frac{\sqrt{1+a}-\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\)

\(=1\)