(\(x-\frac{2}{15}\))\(^3\)=\(\frac{8}{125}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Câu hỏi của Nguyễn Ánh Ngân - Toán lớp 6 - Học toán với OnlineMath
b, Câu hỏi của Vũ Xuân Hiếu - Toán lớp 6 | Học trực tuyến
c)
a,
\(x+\frac{7}{15}=1\frac{1}{20}\)
\(x+\frac{7}{15}=\frac{21}{20}\)
\(x=\frac{21}{20}-\frac{7}{15}=\frac{63}{60}-\frac{28}{60}\)
\(x=\frac{35}{60}=\frac{7}{12}\)
b,
\(\left[3\frac{1}{2}-x\right]\cdot1\frac{1}{4}=\frac{15}{16}\)
\(\left[\frac{7}{2}-x\right]\cdot\frac{5}{4}=\frac{15}{16}\)
\(\frac{7}{2}-x=\frac{15}{16}:\frac{5}{4}=\frac{3}{4}\)
\(\frac{7}{2}-x=\frac{3}{4}\Rightarrow x=\frac{7}{2}-\frac{3}{4}\)
\(x=\frac{11}{4}\)
c,
\(1\frac{1}{5}x+\frac{2}{3}x=\frac{56}{125}\Leftrightarrow\frac{6}{5}x+\frac{2}{3}x=\frac{56}{125}\)
\(\frac{28}{15}x=\frac{56}{125}\Rightarrow x=\frac{6}{25}\)
d,
\(60\%x+0,4x+x:3=2\)
\(\frac{3}{5}x+\frac{2}{5}x+\frac{1}{3}x=2\)
\(\frac{4}{3}x=2\Rightarrow x=\frac{3}{2}\)
Nguyễn Anh Thiện
a)
x + \(\frac{7}{15}\) = \(1\frac{1}{20}\)
X + \(\frac{7}{15}=\frac{21}{20}\)
X \(=\frac{21}{20}-\frac{7}{15}\)
X \(=\frac{63}{60}-\frac{28}{60}=\frac{35}{60}=\frac{7}{12}\)
^^ Học tốt !
a) \(\left(-\frac{3}{4}\right)^{3x-1}=\frac{-27}{64}\)
\(\Leftrightarrow\left(-\frac{3}{4}\right)^{3x-1}=\left(-\frac{3}{4}\right)^3\)
\(\Leftrightarrow3x-1=3\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
b) Đề sai ! Sửa :
\(\left(\frac{4}{5}\right)^{2x+5}=\frac{256}{625}\)
\(\Leftrightarrow\left(\frac{4}{5}\right)^{2x+5}=\left(\frac{4}{5}\right)^4\)
\(\Leftrightarrow2x+5=4\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\frac{1}{2}\)
c) \(\frac{\left(x+3\right)^5}{\left(x+5\right)^2}=\frac{64}{27}\)
\(\Leftrightarrow\left(x+3\right)^3=\left(\frac{4}{3}\right)^3\)
\(\Leftrightarrow x+3=\frac{4}{3}\)
\(\Leftrightarrow x=-\frac{5}{3}\)
d) \(\left(x-\frac{2}{15}\right)^3=\frac{8}{125}\)
\(\Leftrightarrow\left(x-\frac{2}{15}\right)^3=\left(\frac{2}{15}\right)^3\)
\(\Leftrightarrow x-\frac{2}{15}=\frac{2}{15}\)
\(\Leftrightarrow x=\frac{4}{15}\)
\(\begin{array}{l}a)\frac{{{3^{12}} + {3^{15}}}}{{1 + {3^3}}}\\ = \frac{{{3^{12}} + {3^{12}}{{.3}^3}}}{{1 + {3^3}}}\\ = \frac{{{3^{12}}.(1 + {3^3})}}{{1 + {3^3}}}\\ = {3^{12}}\\b)2:{\left( {\frac{1}{2} - \frac{2}{3}} \right)^2} + 0,{125^3}{.8^3} - {( - 12)^4}:{6^4}\\ = 2:{\left( {\frac{3}{6} - \frac{4}{6}} \right)^2} + {(0,125.8)^3} - {12^4}:{6^4}\\ = 2:{\left( {\frac{{ - 1}}{6}} \right)^2} + {1^3} - {(\frac{{12}}{6})^4}\\ = 2:\frac{1}{{36}} + 1 - {2^4}\\ = 2.36 + 1 - 16\\ = 72 + 1 - 16=57\end{array}\)
\(\left(x-\frac{2}{15}\right)^3=\frac{8}{125}< =>\left(x-\frac{2}{15}\right)^3=\left(\frac{2}{5}\right)^3\)
=> \(x-\frac{2}{15}=\frac{2}{5}\)
x = \(\frac{8}{15}\)
(x-2/15)^3=8/125
(x-2/15)^3=(2/5)^3
(x-2/15)=2/5
x=2/5+2/15
x=8/15
vậy x=8/15