Tam giác ABC vuông tại A ,đường cao AH ,H thuộc BC,3AC=5AB.tính \(\dfrac{HB}{HC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, AH là đường cao. Biết AB=15cm,HC=16cm.Tính BC,AH,HB,AC.
Ta có ngay\(\frac{S_{HBA}}{S_{HAC}}=\frac{\frac{1}{2}AH\cdot HB}{\frac{1}{2}AH\cdot HC}=\frac{HB}{HC}=\frac{36}{64}=\frac{9}{16}\)
Vậy ...
A B C H 36 64
Bài làm
Xét tam giác HBA và tam giác HAC có:
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\widehat{B}=\widehat{HAC}\)(cùng phụ với góc C)
=> Tam giác HBA ~ tam giác HAC ( g-g)
=> \(\frac{BH}{AH}=\frac{AH}{HC}\Rightarrow AH^2=BH.HC=AH^2=36.64=AH^2=100\left(cm\right)\)
=> AH = 10 cm
Theo tính chất tỉ số diện tích của hai tam giác đồng dạng có:
\(\frac{S_{\Delta HBA}}{S_{\Delta HAC}}=\left(\frac{BH}{AH}\right)^2=\frac{BH^2}{AH^2}=\frac{36^2}{10^2}=\frac{324}{25}\)
Vậy tỉ số diện tích tam giác HBA và tam giác HAC là 324/25
~ Tính không biết đúng không nữa, hahah~
\(\dfrac{AB}{AC}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{25}\)