K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

\(\dfrac{AB}{AC}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{25}\)

17 tháng 7 2017

Qqqqqqqqqqqqqqqqq

30 tháng 8 2018

Cho tam giác ABC vuông tại A, AH là đường cao. Biết AB=15cm,HC=16cm.Tính BC,AH,HB,AC.

15 tháng 5 2021

Ta có ngay\(\frac{S_{HBA}}{S_{HAC}}=\frac{\frac{1}{2}AH\cdot HB}{\frac{1}{2}AH\cdot HC}=\frac{HB}{HC}=\frac{36}{64}=\frac{9}{16}\)

Vậy ...

A B C H 36 64

Bài làm

Xét tam giác HBA và tam giác HAC có:

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\widehat{B}=\widehat{HAC}\)(cùng phụ với góc C)

=> Tam giác HBA ~ tam giác HAC ( g-g)

=> \(\frac{BH}{AH}=\frac{AH}{HC}\Rightarrow AH^2=BH.HC=AH^2=36.64=AH^2=100\left(cm\right)\)

=> AH = 10 cm

Theo tính chất tỉ số diện tích của hai tam giác đồng dạng có:

\(\frac{S_{\Delta HBA}}{S_{\Delta HAC}}=\left(\frac{BH}{AH}\right)^2=\frac{BH^2}{AH^2}=\frac{36^2}{10^2}=\frac{324}{25}\)

Vậy tỉ số diện tích tam giác HBA và tam giác HAC là 324/25

~ Tính không biết đúng không nữa, hahah~ 

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

HB=15^2/25=9cm

HC=25-9=16cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=25/7

=>BD=75/7cm; CD=100/7cm

b: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

c: AI*AB=AK*AC

=>AI/AC=AK/AB

=>ΔAIK đồng dạng với ΔACB

16 tháng 6 2019

A B C H N M 3 4

Xét \(\Delta HAC\)vuông tại H  có HN là đường trung tuyến ứng với cạnh huyền 

=> HN = NC = NA = AC/2 

=> AC = 2HN = 8

Tương tự AB = 6

Theo hệ thức lượng trong tam giác vuông cho tam giác ABC vuông tại A có AH là đường cao thì

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)

\(\Leftrightarrow AH=\frac{24}{5}\)

Áp dụng định lí Pytago vào \(\Delta HAC\)vuông tại H có

\(HA^2+HC^2=AC^2\)

\(\Leftrightarrow\left(\frac{24}{5}\right)^2+HC^2=8^2\)

\(\Leftrightarrow HC=\frac{32}{5}\)

Tương tự \(HB=\frac{18}{5}\)