phân tích thành nhân tử:
a) 9x-5
b) \(x\sqrt{x}+y\sqrt{y}\)
c) \(x\sqrt{x}-27\)
giải giúp mình với nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\sqrt{xy}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{xy}+1\right)\left(\sqrt{x}-1\right)\\ b,=\sqrt{xy}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{xy}+1\right)\)
a) x2 ( x+ 2y) -x -2y
= x2 ( x+ 2y) -(x+2y)
= (x2-1)(x+2y)
= (x-1)(x+1)(x+2y)
b)3x2- 3y2 -2 (x-y)2
= 3(x2-y2) -2 (x-y)2
= 3(x-y)(x+y)-2(x-y)(x-y)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\\ =\left(x-y\right)\left(3x+3y-2x+2y\right)\\ =\left(x-y\right)\left(x+5y\right)\)
c) x2- 2x-4y2 - 4y
= (x2-4y2)-(2x+4y)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\\ =\left(x+2y\right)\left(x-2y-2\right)\)
d) x3 - 4x2 - 9x +36
= (x3+3x2)-(7x2+21x)+(12x+36)
= x2(x+3)-7x(x+3)+12(x+3)
=(x2-7x+12)(x+3)
\(=\left[\left(x^2-3x\right)-\left(4x-12\right)\right]\left(x+3\right)\\ =\left[x\left(x-3\right)-4\left(x-3\right)\right]\left(x+3\right)=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
a: =(x-z)(y+8)
b; =x^2-2x-3x+6
=(x-2)(x-3)
c: =x^4+10x^2-x^2-10
=(x^2+10)(x^2-1)
=(x^2+10)(x-1)(x+1)
cảm ơn ban Despacito hướng dẫn mình qua tin nhắn và giờ mk đã biết làm rồi
\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x+\sqrt{xy}+y+\sqrt{xy}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x+2\sqrt{xy}+y\right)\)
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
a)
Đa thức bậc nhất không phân tích được nhân tử :v
b)
Đặt \(\sqrt{x}=a;\sqrt{y}=b\) Khi đó:
\(x\sqrt{x}+y\sqrt{y}=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
c)
Tương tự câu b) thì ta sẽ có:
\(x\sqrt{x}-27=a^3-27=\left(a-3\right)\left(a^2+3a+9\right)\)
Bài làm:
a) \(9x-5=\left(3\sqrt{x}\right)^2-\sqrt{5}==\left(3\sqrt{x}-\sqrt{5}\right)\left(3\sqrt{x}+\sqrt{5}\right)\)
b) \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
c) \(x\sqrt{x}-27=\left(\sqrt{x}\right)^3-3^3=\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9\right)\)