Rút gọn: \(S=\frac{2a+2ab-b-1}{3b\left(2a-1\right)+6a-3}\) \(\left(a,b\in Q;a\ne\frac{1}{2};b\ne1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{a\left(b+1\right)-b-1}{b\left(a-1\right)+a-1}=\frac{a\left(b+1\right)-\left(b+1\right)}{b\left(a-1\right)+\left(a-1\right)}=\frac{\left(b+1\right)\left(a-1\right)}{\left(b+1\right)\left(a-1\right)}=1\)
b, \(\frac{2a+2ab-b-1}{3b\left(2a-1\right)+6a-3}=\frac{2a\left(b+1\right)-\left(b+1\right)}{3b\left(2a-1\right)+3\left(2a-1\right)}=\frac{\left(b+1\right)\left(2a-1\right)}{\left(2a-1\right)\left(b+1\right)3}=\frac{1}{3}\)
`M=(2a+2ab-b-1)/(3b(2a-1)+6a-3)`
`=(2a-1+b(2a-1))/(3(2a-1)(b+1))`
`=((2a-1)(b+1))/(3(2a-1)(b+1))`
`=1/3`
`=>` CHọn D
\(\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(1+\frac{4a^2+b^2}{4a^2-b^2}\right)\left(ĐK:2a\ne\pm b\right)\)
\(=\left(\frac{1}{2a-b}-\frac{3b}{\left(2b-b\right)\left(2a+b\right)}-\frac{2}{2a+b}\right):\frac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)
\(=\frac{2a+b-3b-2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\cdot\frac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)
\(=\frac{2a+b-3b-4a+2b}{8a^2}=\frac{-2a}{8a^2}=-\frac{1}{4a}\)
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
a) B = \(\frac{\left(a+3\right)^2}{2a^2+6a}\). \(\left(1-\frac{6a-18}{a^2-9}\right)\)
= \(\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\). \(\left(1-\frac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)
= \(\frac{a+3}{2a}\). \(\left(1-\frac{6}{a+3}\right)\)
= \(\frac{a+3}{2a}\). \(\frac{a+3-6}{a+3}\)
= \(\frac{a+3}{2a}\). \(\frac{a-3}{a+3}\)
= \(\frac{a-3}{2a}\)
b) B = \(\frac{a-3}{2a}\)= 1
\(\Leftrightarrow\)\(a-3=2a\)
\(\Leftrightarrow\)\(a=-3\)
Vậy khi B = 1 thì a = -3
\(S=\frac{2a+2ab-b-1}{3b\left(2a-1\right)+6a-3}\\ =\frac{2a\left(b+1\right)-\left(b+1\right)}{3b\left(2a-1\right)+3\left(2a-1\right)}\\ =\frac{\left(2a-1\right)\left(b+1\right)}{3\left(b+1\right)\left(2a-1\right)}\\=\frac{1}{3}\)