K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}-2+\sqrt{3}=VP\)

30 tháng 10 2020

Bài 1.

Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)

\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)

14 tháng 5 2021

1) Khi x = 49 thì:

\(A=\frac{4\sqrt{49}}{\sqrt{49}-1}=\frac{4\cdot7}{7-1}=\frac{28}{6}=\frac{14}{3}\)

2) Ta có:

\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}\)

\(B=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

c) \(P=A\div B=\frac{4\sqrt{x}}{\sqrt{x}-1}\div\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{4\sqrt{x}}{\sqrt{x}+1}\)

Ta có: \(P\left(\sqrt{x}+1\right)=x+4+\sqrt{x-4}\)

\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=x+4+\sqrt{x-4}\)

\(\Leftrightarrow4\sqrt{x}=x+4+\sqrt{x-4}\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)

Mà \(VT\ge0\left(\forall x\ge0,x\ne1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}=2\\x-4=0\end{cases}}\Rightarrow x=4\)

Vậy x = 4

7 tháng 7 2017

a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)

b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)

=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)

\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)

7 tháng 7 2017

cậu ơi câu c đâu ạ??

12 tháng 8 2019

a) A= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{2}\right)\) (x ≥ 0; x ≠ 4)

= \(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

= \(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)

=\(\frac{2}{x+\sqrt{x}+1}\)

b) Ta có: x ≥ 0 ⇒ \(\sqrt{x}\) ≥ 0

⇒x+\(\sqrt{x}\)+1 ≥ 1 > 0

mà 2 > 0

⇒ A > 0 (1)

Ta có:

\(x+\sqrt{x}+1\) ≥ 1

\(\frac{1}{x+\sqrt{x}+1}\) ≤ 1

\(\frac{2}{x+\sqrt{x}+1}\) ≤ 2

⇒A ≤ 2 (2)

Từ (1) và (2) => 0 < A ≤ 2

a) Ta có: \(A=\sqrt{3+2\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)

\(=\sqrt{1+2\cdot1\cdot\sqrt{2}+2}-\frac{1}{1+\sqrt{2}}\)

\(=\sqrt{\left(1+\sqrt{2}\right)^2}-\frac{1}{1+\sqrt{2}}\)

\(=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}\)

\(=\frac{\left(1+\sqrt{2}\right)^2}{1+\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)

\(=\frac{1+2\sqrt{2}+2-1}{1+\sqrt{2}}\)

\(=\frac{2\sqrt{2}+2}{1+\sqrt{2}}\)

\(=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2\)

b) Ta có: \(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{3}{\sqrt{x}-3}\right)\cdot\frac{\sqrt{x}+3}{x+9}\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\frac{1}{\sqrt{x}-3}\)

\(=\frac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)

\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)

\(=\frac{1}{\sqrt{x}-3}\)(đpcm)