K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

Theo bất đẳng thức AM-GM dạng cộng mẫu thức ta có :

\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{1}{8}\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy ta có điều phải chứng minh 

17 tháng 5 2022

Áp dụng BĐT AM-GM,ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{4\left(x+y\right)}{x+y}\)

\(\Leftrightarrow\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\) ( đfcm )

 

 

 

17 tháng 5 2022

Có: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\)\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)\(\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)

\(\dfrac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{xy\left(x+y\right)}\)\(\left(x+y\right)^2\ge4xy\)\(x^2+2xy+y^2\ge4xy\)

\(x^2-4xy+2xy+y^2\ge0\)\(x^2-2xy+y^2\ge0\)\(\left(x-y\right)^2\ge0\) luôn đúng 

3 tháng 6 2019

Ta có : \(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)

\(8^y+8^y+8^2\ge3\sqrt[3]{8^y.8^y.8^2}=12.4^y\)

\(8^z+8^z+8^2\ge3\sqrt[3]{8^z.8^z.8^2}=12.4^z\)

\(8^x+8^y+8^z\ge3\sqrt[3]{8^x.8^y.8^z}=3\sqrt[3]{8^6}=192\)

Cộng các vế , ta được :

\(3\left(8^x+8^y+8^z+64\right)\ge3\left(4^{x+1}+4^{y+1}+4^{z+1}+64\right)\)

hay \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)

22 tháng 6 2019

Ta chứng minh \(\frac{x^4+y^4}{x^2+y^2}\ge\frac{\frac{\left(x^2+y^2\right)^2}{2}}{x^2+y^2}=\frac{x^2+y^2}{2}\)

Tương tự và cộng lại

\(\Rightarrow VT\ge x^2+y^2+z^2\ge xy+xz+yz=3\)

22 tháng 6 2019

chứng minh kiểu j vậy bạn ? , Chỉ mình rõ hơn được không ? 

14 tháng 12 2017

đề sai khỏi làm

23 tháng 12 2017

🤣🤣🤣

28 tháng 2 2019

\(\hept{\begin{cases}-1\le x\le1\\-1\le y\le1\\-1\le z\le1\end{cases}}\Leftrightarrow x^2;y^2;z^2\le1\)

Mà: \(x;y;z\le1\Leftrightarrow y^4\le y^2;z^6\le x^2\)

\(\Leftrightarrow x^2+y^4+z^6\le x^2+y^2+z^2\)

Trong x;y;z có ít nhất 2 số cùng dấu,nghhiax là có tích >=0,giả sử đó là xy

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2xy=\left(x+y\right)^2+z^2=\left(-z\right)^2+z^2=2z^2\le2\)