F(x)=ax^2+bx
Tìm a,b biết f(x)-f(x-1)=x với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức bậc hai cần tìm có dạng f(x) = ax+bx+c (a khác 0 )
Ta có f(x-1)=a(x-1)2+b(x-1)+c
=>a=1 =>a=0.5
b-a=0 b=0.5
Vậy đa thức cần tìm có dạng 0.5x2+0.5x+c (c la hang so tuy y)
Ap dung :
+>Với x=1 ta có f(1)-f(0) = 1
+>Với x=2 ta có f(2)-f(1) = 2
. . . . . . . . . . . .
+>Voi x=n ta co f(n)-f(n-1)=n
=>S=1+2+3+......+n= f(n)-f(0)= n2/2+n/2 +c-c= n*(n+1)/2
\(f\left(0\right)=\dfrac{b}{d}\Rightarrow f\left(f\left(0\right)\right)=0\Rightarrow f\left(\dfrac{b}{d}\right)=0\)
\(\Rightarrow\dfrac{\dfrac{ab}{d}+b}{\dfrac{cb}{d}+d}=0\Rightarrow b\left(a+d\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\d=-a\end{matrix}\right.\)
TH1: \(b=0\)
\(f\left(1\right)=1\Rightarrow a=c+d\)
\(f\left(2\right)=2\Rightarrow2a=2\left(2c+d\right)\Rightarrow a=2c+d\)
\(\Rightarrow2c+d=c+d\Rightarrow c=0\) (ktm)
TH2: \(d=-a\)
\(f\left(1\right)=1\Rightarrow a+b=c+d=c-a\Rightarrow2a+b=c\) (1)
\(f\left(2\right)=2\Rightarrow2a+b=2\left(2c+d\right)=2\left(2c-a\right)\Rightarrow4a+b=4c\) (2)
Trừ (2) cho (1) \(\Rightarrow2a=3c\Rightarrow\dfrac{a}{c}=\dfrac{3}{2}\)
\(\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{ax+b}{cx+d}=\dfrac{a}{c}=\dfrac{3}{2}\)
Hay \(y=\dfrac{3}{2}\) là tiệm cận ngang
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+2b+c=156\\9a-3b+c=156\\a-b+c=132\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=4\\c=132\end{matrix}\right.\)
b: \(f\left(x\right)=4x^2+4x+132=\left(2x+1\right)^2+131>0\forall x\)
Khi x = 1
=> f(x) = f(1) = a + b
=> f(x - 1) = f(0) = 0
=> f(x) - f(x- 1) = f(1) - f(0) = a + b - 0 = 1
=> a + b = 1 (1)
Khi x = - 1
=> f(x) = f(-1) = a - b
=> f(x - 1) = f(- 2) = 4a - 2b
=> f(x) - f(x - 1) = f(-1) - f(- 2) = a - b - (4a - 2b)
=> a - b - 4a + 2b = - 1
=> -3a + b = -1 (2)
Lấy (1) trừ (2) theo vế ta có
(a + b) - (- 3a + b) = 1 - (-1)
=> a + b + 3a - b = 2
=> 4a = 2
=> a = 0,5
=> b = 0,5
Vậy a = 0,5 ; b = 0,5