Cho \(\sqrt{ab}\)+\(\sqrt{bc}\)+\(\sqrt{ac}\)=1
Tìm giá trị nhỏ nhất của E=\(\frac{a^2}{a+b}\)+\(\frac{b^2}{b+c}\)+\(\frac{c^2}{c+a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\) (áp dụng Bất Đẳng Thức Cosi)
\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)
\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)
Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)
Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)
Dấu "=" xảy ra khi a=b=c
Áp dụng BĐT Cauchy ta được \(2\sqrt{bc}\le b+c\)=> \(\frac{a^2}{a+\sqrt{bc}}\ge\frac{2a^2}{2a+b+c}\)
Áp dụng BĐT tương tự ta được đẳng thức
\(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+c+a}+\frac{2c^2}{2c+a+b}\)
Áp dụng BĐT Cauchy ta lại có
\(\frac{2a^2}{2a+b+c}+\frac{2a+b+c}{8}\ge a;\frac{2b^2}{2b+a+c}+\frac{2b+a+c}{8}\ge b;\frac{2c^2}{2c+a+b}+\frac{2c+a+b}{8}\ge c\)
Cộng theo vế ta được
\(\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+a+c}+\frac{2c^2}{2c+a+b}\ge\frac{3}{2}\)
Vậy MinP=\(\frac{3}{2}\)
\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{1-a-b-ab}}=\sqrt{\dfrac{ab}{\left(1-b\right)\left(1-a\right)}}\le\dfrac{\dfrac{a}{1-b}+\dfrac{b}{1-a}}{2}\left(1\right)\) \(tương-tự\Rightarrow\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{\dfrac{b}{1-c}+\dfrac{c}{1-b}}{2}\left(2\right)\)
\(\Rightarrow\sqrt{\dfrac{ca}{b+ ca}}\le\dfrac{\dfrac{c}{1-a}+\dfrac{a}{1-c}}{2}\left(3\right)\)
\( \left(1\right)\left(2\right)\left(3\right)\Rightarrow A\le\dfrac{\dfrac{a}{1-b}+\dfrac{b}{1-a}+\dfrac{b}{1-c}+\dfrac{c}{1-b}+\dfrac{c}{1-a}+\dfrac{a}{1-c}}{2}=\dfrac{\dfrac{a+c}{1-b}+\dfrac{b+c}{1-a}+\dfrac{b+a}{1-c}}{2}=\dfrac{\dfrac{1-b}{1-b}+\dfrac{1-a}{1-a}+\dfrac{1-c}{1-c}}{2}=\dfrac{3}{2}\)
\(\Rightarrow A_{max}=\dfrac{3}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Bài này cho thêm điều kiện a, b, c dương
Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(E=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\)\(\frac{\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}}{2}\ge\frac{3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{6}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)