b)Biết tgx + cotgx = 2 .Tính A= sinx.Cosx
và B =sinx + cosx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dùng bảng lượng giác sinx = 0,2368 => x ≈ 13o42'
- Cách nhấn máy tính:
b) x ≈ 51o31'
- Cách nhấn máy tính:
c) x ≈ 65o6'
- Cách nhấn máy tính:
d) x ≈ 17o6'
- Cách nhấn máy tính:
Ta có \(\tan x=\frac{1}{2}\Rightarrow\frac{\sin x}{\cos x}=\frac{1}{2}\Rightarrow\cos x=2\sin x\)
Từ đó \(\frac{\cos x+\sin x}{\cos x-\sin x}=\frac{2\sin x+\sin x}{2\sin x-\sin x}=\frac{3\sin x}{\sin x}=3\)
Vậy \(\frac{\cos x+\sin x}{\cos x-\sin x}=3\)
1.
\(sin^2x+cos^2x=1\Rightarrow\left(\dfrac{1}{4}\right)^2+cos^2x=1\)
\(\Rightarrow cos^2x=\dfrac{15}{16}\Rightarrow cosx=\dfrac{\sqrt{15}}{4}\)
2.
\(tanx=\dfrac{1}{3}\Rightarrow tan^2x=\dfrac{1}{9}\Rightarrow\dfrac{sin^2x}{cos^2x}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{sin^2x}{1-sin^2x}=\dfrac{1}{9}\Rightarrow9sin^2x=1-sin^2x\)
\(\Rightarrow sin^2x=\dfrac{1}{10}\Rightarrow sinx=\dfrac{\sqrt{10}}{10}\)
ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\)
Ta có:
\(\left\{{}\begin{matrix}tanx=3\\sin^2x+cos^2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sinx=3cosx\\9cos^2x+cos^2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sinx=3cosx\\cos^2x=\dfrac{1}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sinx=3cosx\\cosx=\pm\dfrac{1}{\sqrt{10}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=\dfrac{3}{\sqrt{10}}\\cosx=\dfrac{1}{\sqrt{10}}\end{matrix}\right.\\\left\{{}\begin{matrix}sinx=-\dfrac{3}{\sqrt{10}}\\cosx=-\dfrac{1}{\sqrt{10}}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2}{\sin2x}=2\)
\(\Leftrightarrow\sin2x=1\)
\(\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\)
hay \(x=\dfrac{\Pi}{4}+k\Pi\)
a: \(\Leftrightarrow\dfrac{2}{\sin2x}=2\)
\(\Leftrightarrow\sin2x=1\)
\(\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\)
hay
b: \(\Leftrightarrow3\cdot tan^4x+3tan^2x-tan^2x-1=0\)
\(\Leftrightarrow3tan^2x-1=0\)
\(\Leftrightarrow tan^2x=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(\dfrac{1}{\sqrt{3}}\right)+k\Pi=\dfrac{\Pi}{6}+k\Pi\\x=-\dfrac{\Pi}{6}+k\Pi\end{matrix}\right.\)
a/
\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)
\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)
b/
\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)
\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)
\(=\left(1-sinx+cosx\right)^2\)
c/
\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)
\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)
d/
\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)
Lời giải:
$\tan x +\cot x=2$. Mà $\tan x\cot x =1$
$\Rightarrow \tan x = \cot x =1$
$\Rightarrow x=45^0$
$\Rightarrow A=\sin x\cos x =\sin 45^0.\cos 45^0=\frac{1}{2}$
$B=\sin x+\cos x= \sin 45^0+\cos 45^0=\sqrt{2}$