Tính GTNN và GTLN của biểu thức: \(A=\frac{\sqrt{x}-2}{x+5}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}=\frac{-5\left(\sqrt{x}+1\right)+8}{\sqrt{x}+1}=\frac{8}{\sqrt{x}+1}-5\)
Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)
Max A = 3 <=> x = 0
- Không tồn tại giá trị nhỏ nhất.
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
ĐKXĐ: \(x\ge0\)
a/ \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x+1>0\end{matrix}\right.\) \(\Rightarrow B=\frac{\sqrt{x}}{x+1}\ge0\)
\(B_{min}=0\) khi \(x=0\)
\(B-\frac{1}{2}=\frac{\sqrt{x}}{x+1}-\frac{1}{2}=-\frac{x-2\sqrt{x}+1}{x+1}=-\frac{\left(\sqrt{x}-1\right)^2}{x+1}\le0\)
\(\Rightarrow B\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\) khi \(x=1\)
b/ Tương tự câu a \(M_{min}=0\)
\(M=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x+2\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}\le1\)
\(M_{max}=1\) khi \(x=1\)
Lời giải:
a) ĐK: $x\geq 0$
Với $x\geq 0$ ta thấy $x+\sqrt{x}+5\geq 5$
$\Rightarrow A=\frac{3}{x+\sqrt{x}+5}\leq \frac{3}{5}$
Vậy $A_{\max}=\frac{3}{5}$ khi $x=0$
b) ĐK: $x\geq 0$
Với $x\geq 0$ thì $x+\sqrt{x}+3\geq 3$
$\Rightarrow B=\frac{-5}{x+\sqrt{x}+3}\geq \frac{-5}{3}$
Vậy $B_{\min}=\frac{-5}{3}$ khi $x=0$
Đặt \(\sqrt{x}=a\Rightarrow a^2=x\)
Khi đó ta có được:
\(A=\frac{a-2}{a^2+5}\Rightarrow A\cdot a^2+5\cdot A-a+2=0\)
\(\Leftrightarrow A\cdot a^2-a+\left(5A+2\right)=0\)
\(\Delta=1-4A\left(5A+2\right)=-20A^2-8A+1\ge0\)
\(\Rightarrow\left(1-10A\right)\left(2A+1\right)\ge0\Rightarrow-\frac{1}{2}\le A\le\frac{1}{10}\)