K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2020

4x ÷ 13 = 0

4x          = 0 nhân 13

4x          = 0

  x           = 0 ÷ 4

  x           = 0

Trả lời:

                    4x \(\div\)13 = 0

( x + x + x + x ) \(\div\)13 = 0

  x + x + x + x                   = 0 x 13

  x + x + x + x                   =    0

           x                            =  0  \(\div\)4

           x                            =         0

4 tháng 10 2021

\(a,\Rightarrow4x\left(x^2-9\right)=0\\ \Rightarrow4x\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,\Rightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\\ \Rightarrow\left(2x-6\right)\left(4x-4\right)=0\\ \Rightarrow2\left(x-3\right)4\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

4 tháng 10 2021

a) \(\Rightarrow4x\left(x^2-9\right)=0\)

\(\Rightarrow4x\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\)

\(\Rightarrow\left(2x-6\right)\left(4x-4\right)=0\)

\(\Rightarrow8\left(x-3\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{2}{5}\left(4x-3\right)^2=-\dfrac{5}{18}\)

\(\Leftrightarrow\left(4x-3\right)^2=\dfrac{25}{36}\)

\(\Leftrightarrow4x-3\in\left\{\dfrac{5}{6};-\dfrac{5}{6}\right\}\)

hay \(x\in\left\{\dfrac{23}{24};\dfrac{13}{24}\right\}\)

NV
22 tháng 11 2021

\(2x^2+2y^2-5xy+x-2y+3=0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)+x-2y+3=0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y+1\right)=-3\) 

x-2y-3-113
2x-y+113-3-1
x15/3-3-7/3
y24/3-2-8/3

 

Vậy \(\left(x;y\right)=\left(1;2\right)\) là bộ nghiệm nguyên dương duy nhất

Bài 1: 

b) \(\left(2x^2-3y\right)^3\)

\(=8x^6-3\cdot4x^4\cdot3y+3\cdot2x^2\cdot9y^2-27y^3\)

\(=8x^6-36x^4y+54x^2y^2-27y^3\)

Bạn nên đánh lại đề bài a nhé.

undefined

29 tháng 8 2021

\(a,1-\left(\dfrac{\dfrac{5}{3}}{8}+x-\dfrac{\dfrac{7}{5}}{24}\right)-\dfrac{\dfrac{16}{2}}{3}=0\\ \Leftrightarrow1-\left(\dfrac{5}{24}+x-\dfrac{7}{120}\right)=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{3}{20}+x=1-\dfrac{8}{3}=-\dfrac{5}{3}\\ \Leftrightarrow x=-\dfrac{5}{3}-\dfrac{3}{20}=-\dfrac{109}{60}\)

 

29 tháng 8 2021

Thanks nhìu

15 tháng 1 2022

Hai bài bị trùng nhau nên các bạn nhìn ảnh hay văn bản đều như nhau ạ

c: =>x+2>0

hay x>-2

d: =>-4<=x<=3

e: =>\(x\in\varnothing\)

f: \(\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -6\end{matrix}\right.\)

21 tháng 3 2022

\(\left|x\right|=2\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

Thay x=-2 vào B ta có:
\(B=4x^3+x-2022=4.\left(-2\right)^3+\left(-2\right)-2022=-32-2-2022=-2056\)

Thay x=2 vào B ta có:

\(B=4x^3+x-2022=4.2^3+2-2022=32+2-2022=-1988\)

2 tháng 3 2022

a. \(x^2-25-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5\right)-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b. \(\left(3x+1\right)^2=\left(2x-5\right)\\ \Leftrightarrow9x^2+6x+1=2x-5\\ \Leftrightarrow9x^2+6x-2x=-5-1\\ \Leftrightarrow9x^2+4x=-6\\ \Leftrightarrow x\left(9x+4\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\9x+4=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{10}{9}\end{matrix}\right.\)

c. \(2x^2-7x+6=0\\ \Leftrightarrow2x^2-7x=-6\\ \Leftrightarrow x\left(2x-7\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\dfrac{1}{2}\end{matrix}\right.\)

2 tháng 3 2022

a, \(\left(x-5\right)\left(x+5\right)-3\left(x-5\right)=0\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\Leftrightarrow x=-2;x=5\)

b, bạn ktra lại đề, thường thường ngta hay cho 2 vế cùng bình phương 

c, \(2x^2-7x+6=0\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\Leftrightarrow x=\dfrac{3}{2};x=2\)

8 tháng 8 2023

Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)

a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)

\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)

\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{a-4}\)

b) Thay x=9 vào P ta có:

\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)

c) \(P< 0\) khi:

\(\dfrac{4\sqrt{x}+4}{a-4}< 0\) 

Mà: \(4\sqrt{x}+4>0\)

\(\Rightarrow a-4< 0\)

\(\Rightarrow a< 4\) 

kết hợp với Đk ta có:

\(0\le x< 4\)