K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

a: \(K=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

\(=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{a-1}\)

\(=\dfrac{a-1}{\sqrt{a}}\)

20 tháng 12 2021

\(a.a\ne\pm1\)

\(b.K=\dfrac{1}{a+1}+\dfrac{2}{a^2-1}=\dfrac{a-1}{\left(a-1\right)\left(a+1\right)}+\dfrac{2}{\left(a-1\right)\left(a+1\right)}=\dfrac{a+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{1}{a-1}\)

\(c.K=\dfrac{1}{1-\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\)

2 tháng 2 2017

 \(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right)=\frac{a^2-1}{a^2-a}=\frac{a+1}{a}\)

ở phàn a+/a thiếu số 1 nhé

\(\frac{1}{a+1}+\frac{2}{a^2-1}=\frac{a-1+2}{a^2-1}=\frac{1}{a-1}\)

=> K =\(\frac{a^2-1}{a}\) 

đkxđ: a khác +-1

b, thay vào mà tình

2 tháng 2 2017

a/ \(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)

\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)

\(=\frac{a^2-1}{a\left(a-1\right)}:\frac{a-1+2}{\left(a-1\right)\left(a+1\right)}\)

\(=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}.\frac{\left(a-1\right)\left(a+1\right)}{a-1}\)

\(=\frac{a+1}{a}.a+1\)

\(=\frac{\left(a+1\right)^2}{a}\)

b, Thay a=1/2

\(\Rightarrow\frac{\left(\frac{1}{2}+1\right)^2}{\frac{1}{2}}=\frac{\frac{9}{4}}{\frac{1}{2}}=\frac{9}{2}\)

11 tháng 12 2020

a,ĐK : \(a\ne\pm1\)

 \(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)

\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)

\(=\left(\frac{a^2}{a\left(a-1\right)}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{a-1}{\left(a+1\right)\left(a-1\right)}+\frac{2}{\left(a+1\right)\left(a-1\right)}\right)\)

\(=\left(\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}\right):\left(\frac{a+1}{\left(a+1\right)\left(a-1\right)}\right)\)

\(=\frac{a+1}{a}.\frac{a-1}{1}=\frac{a^2-1}{a}\)

b, Thay a = 1/2 ta được : 

\(K=\frac{\left(\frac{1}{2}\right)^2-1}{\frac{1}{2}}=\frac{\frac{1}{4}-1}{\frac{1}{2}}=\frac{-\frac{3}{4}}{\frac{1}{2}}=-\frac{3}{8}\)

2 tháng 12 2017

\(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2+1}\right)\)

a/ K xác định khi \(\hept{\begin{cases}a-1\ne0\\a^2-a=a\left(a-1\right)\ne0\\a+1\ne0\end{cases}}\) <=> \(\hept{\begin{cases}a\ne\pm1\\a\ne0\end{cases}}\)

b/ \(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2+1}\right)=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{a^2+1}\right)\)

=> \(K=\frac{a^2-1}{a\left(a-1\right)}:\frac{a^2+1+2a+2}{\left(a+1\right)\left(a^2+1\right)}\)

=> \(K=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}.\frac{\left(a+1\right)\left(a^2+1\right)}{a^2+2a+3}\)

=> \(K=\frac{\left(a+1\right)^2\left(a^2+1\right)}{a\left(a^2+2a+3\right)}\)

c/ a=1/2 

=> \(K=\frac{\left(\frac{1}{2}+1\right)^2\left(\frac{1}{4}+1\right)}{\frac{1}{2}\left(\frac{1}{4}+1+3\right)}=\frac{\frac{9}{4}.\frac{5}{4}}{\frac{17}{8}}=\frac{45}{16}.\frac{8}{17}=\frac{45}{2.17}\)

=> \(K=\frac{45}{34}\)

16 tháng 6 2016

ĐKXĐ: a > 0

a/ \(K=\left[\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left[\frac{1}{\sqrt{a}-1}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\)

       \(=\left[\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left[\frac{\sqrt{a}+3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\)

        \(=\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}+3}\right]\)  \(=\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

b/ Ta có: \(\sqrt{a}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

     \(K=\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}=\frac{\left(\sqrt{2}+2\right)\sqrt{2}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+4\right)}=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{2}\left(\sqrt{2}+1\right)\left(2\sqrt{2}+1\right)}\)

            \(=\frac{\sqrt{2}}{2\sqrt{2}+1}\)

c/ \(K< 0\Leftrightarrow\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}< 0\)\(\Rightarrow\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)< 0\)

       \(\Rightarrow\sqrt{a}-1< 0\) (vì \(\left(\sqrt{a}+1\right)^2>0\))    \(\Rightarrow\sqrt{a}< 1\Rightarrow a< 1\)

               Vậy \(0< a< 1\) thì K < 0

a) Ta có: \(A=\left(1+\dfrac{x^2}{x^2+1}\right):\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3+x-x^2-1}\right)\)

\(=\dfrac{2x^2+1}{x^2+1}:\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{2x^2+1}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x^2+1\right)}{\left(x-1\right)^2}\)

\(=\dfrac{2x^2+1}{x-1}\)

b) Thay \(x=-\dfrac{1}{2}\) vào A, ta được:

\(A=\left(2\cdot\dfrac{1}{4}+1\right):\left(\dfrac{-1}{2}-1\right)\)

\(=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

c) Để A<1 thì A-1<0

\(\Leftrightarrow\dfrac{2x^2+1}{x-1}-1< 0\)

\(\Leftrightarrow\dfrac{2x^2+1-x+1}{x-1}< 0\)

\(\Leftrightarrow\dfrac{2x^2-x+2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)

hay x<1

19 tháng 7 2021

câu c xét hiệu à bạn

17 tháng 7 2023

a) A=2x2+6x-2x2+3x-4x+6+x-2=6x+4
b) x+1=2 => x=1
Tại x=1, A=6*1+4=10
c) A=6x+4=1/2 => x=(1/2-4)/6=-7/12

17 tháng 7 2023

`!`

`a,A=2x(x+3) -(x+2)(2x-3)+x-2`

`= 2x^2 + 6x-(2x^2 -3x+4x-6)+x-2`

`= 2x^2 +6x+2x^2 +3x-4x+6+x-2`

`= (2x^2-2x^2)+(6x+3x-4x+x)+(6-2)`

`=6x+4`

`b, x+1=2`

`=>x=2-1`

`=>x=1`

`A=6x+4` mà `x=1`

Thì `6x+4=6.1+4=10`

`c,` Ta có :

`6x+4=1/2`

`=> 6x=1/2-4`

`=> 6x= -7/2`

`=>x=-7/2 : 6`

`=>x=-7/2 xx1/6`

`=>x= -7/12`