K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2020

\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)

Để M nguyên => \(\frac{3}{x^2-2}\)nguyên

=> \(3⋮x^2-2\)

=> \(x^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x2 - 21-13-3
x2315-1
x\(\pm\sqrt{3}\)\(\pm1\)\(\pm\sqrt{5}\)Vô nghiệm

Vì x thuộc Z => x = \(\pm1\)

15 tháng 7 2020

Bài làm:

\(M=\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)

Để M là số nguyên => \(\frac{3}{x^2-2}\inℤ\Rightarrow x^2-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\Rightarrow x\in\left\{-1;1\right\}\)

Vậy x = 1 hoặc x = -1 thì M nguyên