So sánh các số :\(1+\sqrt{15}\)Và\(\sqrt{24}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nik t tạo ra ko để cho m trả lời linh tin nha :))))))) Nguyễn việt Hiếu tk fake Ai ko tin mình là Hiếu CTV thì ib
Ta có :
\(\left(1+\sqrt{15}\right)^2=1+2\sqrt{15}+15=16+2\sqrt{15}\)
\(\left(\sqrt{24}\right)^2=24=16+8=16+2.4=16+2\sqrt{16}\)
Ta thấy \(16+2\sqrt{15}< 16+2\sqrt{16}\) nên \(\left(1+\sqrt{15}\right)^2< \left(\sqrt{24}\right)^2\)
\(\Rightarrow\)\(1+\sqrt{15}< \sqrt{24}\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
Chúc bạn học tốt ~
cả hai bài đều giải bằng cách bình phương cả hai vế rồi so sánh
So sánh từng vế:
\(\sqrt{15}+1=4,872983346\)
\(\sqrt{24}=4,898979486\)
Vậy: \(\sqrt{15}+1< \sqrt{24}\)
\(\sqrt{2002}+\sqrt{2004}=89,50977321\)
\(2\sqrt{2005}=89,5545271\)
Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)
P/s: Ko chắc
a/ \(\sqrt{10}< \sqrt{16}=4\)
b/ \(\sqrt{40}>\sqrt{36}=4\)
c/ \(\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}=4+5=9\)
d/ \(3\sqrt{2}=\sqrt{18}< \sqrt{20}=2\sqrt{5}\)
a) \(\sqrt{10}\)và 4
4 = \(\sqrt{16}\)
Do \(\sqrt{16}>\sqrt{10}\)nên \(4>\sqrt{10}\)
b) \(\sqrt{40}\)và 6
6 = \(\sqrt{36}\)
Do \(\sqrt{40}>\sqrt{36}\)nên\(\sqrt{40}>6\)
a) Ta có: \(2=\sqrt{4}\)
Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)
b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)
Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)
c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)
\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)
Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)
\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)
a) Ta có:
\(2=1+1=1+\sqrt{1}\)
Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)
\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)
\(\Rightarrow2< \sqrt{2}+1\)
b) Ta có:
\(1=2-1=\sqrt{4}-1\)
Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)
\(\Rightarrow1>\sqrt{3}-1\)
c) Ta có:
\(10=2\cdot5=2\sqrt{25}\)
Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)
\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)
\(\Rightarrow10< 2\sqrt{31}\)
d) Ta có:
\(-12=-3\cdot4=-3\sqrt{16}\)
Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)
\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)
\(\Rightarrow-12< -3\sqrt{11}\)
\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)
Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)
\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)
\(\Rightarrow A< B\)
\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)
\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)
mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)
nên A<B