Cho một hình tam giác ABC có s= 180 cm2.Trên cạnh CA và CB lần lượt lấy 2 điểm M và N sao cho CM=1/3 CA,CN=2/3 CB.Tính tỉ số diện tich giữa tứ giác ANMB và tam giác ABC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BMC và tam giác BCA có chung chiều cao hạ từ B xuống AC, đáy CM = 1/3 đáy CA
=> \(S_{BMC}=\frac{1}{3}.S_{BCA}=\frac{1}{3}.180=60\left(cm^2\right)\)
Xét tam giác BMC và tam giác NMC có chung chiều cao hạ từ đỉnh M xuống cạnh BC, đáy CN = 2/3 đáy CB
\(\Rightarrow S_{NMC}=\frac{2}{3}.S_{BMC}=\frac{2}{3}.60=40\left(cm^2\right)\)
\(\Rightarrow S_{AMNB}=S_{ABC}-S_{MNC}=180-40=140\left(cm^2\right)\)
=> Tỉ số giữa \(\frac{S_{AMNB}}{S_{ABC}}=\frac{140}{180}=\frac{7}{9}\)
Vậy tỉ số diện tích giữa tứ giác AMNB và tam giác ABC là 7/9
Cho tui tick nha
Diện tích tam giác ABN = 1/4 diện tích tam giác ABC vì có chung chiều cao nối từ A xuống N và BN = 1/4 BC
Diện tích tam giác ABN là:
64 x 1/4 = 16 (cm2 )
Diện tích tam giác BMN = 1/2 diện tích tam giác ABN vì có chung chiều cao nối từ N xuống M và BM = 1/2 BA
Diện tích tam giác BMN là:
16 x 1/2 = 8 (cm2 )
Đáp số: 8 cm2
Mình cũng đang gặp bài này, có ai biết bài này kh giải chi tiết ra giùm mình với nhé
\(\dfrac{CP}{CA}=\dfrac{2}{3}\Rightarrow\dfrac{AP}{CA}=\dfrac{1}{3}\)
Hai tg ABP và tg ABC có chung đường cao từ B->CA nên
\(\dfrac{S_{ABP}}{S_{ABC}}=\dfrac{AP}{CA}=\dfrac{1}{3}\Rightarrow S_{ABP}=\dfrac{1}{3}xS_{ABC}\)
Hai tg AMP và tg ABP có chung đường cao từ P->AB nên
\(\dfrac{S_{AMP}}{S_{ABP}}=\dfrac{AM}{AM}=\dfrac{1}{4}\Rightarrow S_{AMP}=\dfrac{1}{4}xS_{ABP}=\dfrac{1}{4}x\dfrac{1}{3}xS_{ABC}=\dfrac{1}{12}xS_{ABC}\)
\(S_{BCP}=S_{ABC}-S_{ABP}=S_{ABC}-\dfrac{1}{3}xS_{ABC}=\dfrac{2}{3}xS_{ABC}\)
\(\dfrac{BN}{BC}=\dfrac{2}{3}\Rightarrow\dfrac{CN}{BC}=\dfrac{1}{3}\)
Hai tg CNP và tg BCP có chung đường cao từ P->BC nên
\(\dfrac{S_{CNP}}{S_{BCP}}=\dfrac{CN}{BC}=\dfrac{1}{3}\Rightarrow S_{CNP}=\dfrac{1}{3}xS_{BCP}=\dfrac{1}{3}x\dfrac{2}{3}xS_{ABC}=\dfrac{2}{9}xS_{ABC}\)
\(\dfrac{AM}{AB}=\dfrac{1}{4}\Rightarrow\dfrac{BM}{AB}=\dfrac{3}{4}\)
Hai tg BCM và tg ABC có chung đường cao từ C->AB nên
\(\dfrac{S_{BCM}}{S_{ABC}}=\dfrac{BM}{AB}=\dfrac{3}{4}\Rightarrow S_{BCM}=\dfrac{3}{4}xS_{ABC}\)
Hai tg BMN và tg BCM có chung đường cao từ M->BC nên
\(\dfrac{S_{BMN}}{S_{BCM}}=\dfrac{BN}{BC}=\dfrac{2}{3}\Rightarrow S_{BMN}=\dfrac{2}{3}xS_{BCM}=\dfrac{2}{3}x\dfrac{3}{4}xS_{ABC}=\dfrac{1}{2}xS_{ABC}\)
\(S_{MNP}=S_{ABC}-S_{AMP}-S_{CNP}-S_{BMN}=\)
\(=S_{ABC}-\dfrac{1}{12}xS_{ABC}-\dfrac{2}{9}xS_{ABC}-\dfrac{1}{2}xS_{ABC}=\)
\(=\dfrac{11}{36}xS_{ABC}\)
cô làm rồi em nhé
https://olm.vn/cau-hoi/cho-tam-giac-abc-co-dien-tich-180-cm2-tren-cac-canh-ab-bc-ca-lan-luot-lay-cac-diem-m-n-p-sao-cho-am-23-ab-bn-34-bc-va-cp-13-ca-tinh-di.8088189515587
AP = AC - PC = AC - \(\dfrac{1}{3}\)AC = \(\dfrac{2}{3}\)AC
SAMP = \(\dfrac{2}{3}\)SACM (vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy AC và AP = \(\dfrac{2}{3}\)AC)
SACM = \(\dfrac{2}{3}\)SABC (vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và AM = \(\dfrac{2}{3}\)AB)
SAMP = \(\dfrac{2}{3}\times\dfrac{2}{3}\)SABC = 180 \(\times\dfrac{4}{9}\) = 80 (cm2)
SBMN = \(\dfrac{3}{4}\)SBCM (vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy BC và BN = \(\dfrac{3}{4}\)BC)
BM = AB - AM = AB - \(\dfrac{2}{3}\)AB = \(\dfrac{1}{3}\)AB
SBCM = \(\dfrac{1}{3}\)SABC( vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM = \(\dfrac{1}{3}\)AB)
SBMN = \(\dfrac{3}{4}\times\dfrac{1}{3}\)SABC = 180 \(\times\dfrac{1}{4}\) = 45 (cm2)
CN = BC - BN = BC - \(\dfrac{3}{4}\)BC = \(\dfrac{1}{4}\)BC
SCPN = \(\dfrac{1}{4}\)SCPB ( vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{1}{4}\)BC)
SCBP = \(\dfrac{1}{3}\)SABC ( vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AC và CP = \(\dfrac{1}{3}\)CA)
SCPN = \(\dfrac{1}{4}\times\dfrac{1}{3}\)SABC = 180 \(\times\) \(\dfrac{1}{12}\) = 15 (cm2)
Diện tích tam giác MNPQ là:
180 - ( 80 + 45 + 15) = 40 (cm2)
Đáp số 40 cm2
a: S BMC=2/3*90=60cm2
b: S ANC=1/3*90=30cm2
=> S AMN=1/3*30=10cm2
S ABN=2/3*90=60cm2
=>S AMNB=70cm2
a)Nối K với C
SABN = \(\frac{2}{3}\)SABC vì:
- Đáy BN = \(\frac{2}{3}\)đáy BC
- Chung đường cao từ đỉnh A xuống đáy BC
SANM = \(\frac{1}{3}\)SANC vì:
Đáy AM = \(\frac{1}{3}\)đáy AC
- Chung đường cao từ đỉnh N xuống đáy AC
SABN là:
180 : 3 x 2 = 120 (cm2)
SANC là:
180 - 120 = 60 (cm2)
SANM là:
60 : 3 = 20 (cm2)
Mà SAMNB = SABN + SANM
Vậy SAMNB là:
120 + 20 = 140 (cm2)
b) SBKN = \(\frac{2}{1}\)SNKC vì:
- Đáy BN = \(\frac{2}{1}\)đáy NC
- Chung đường cao từ đỉnh K xuống đáy BC
Mà hai tam giác này còn chung đáy KN, suy ra đường cao từ đỉnh B xuống đáy KN = \(\frac{2}{1}\)đường cao từ đỉnh C xuống đáy KN
Hai đường cao này lần lượt là đường cao của hai tam giác ABK và ACK, => SABK = \(\frac{2}{1}\)SACK
- SAMK = \(\frac{1}{3}\)SACK vì:
- Đáy AM = \(\frac{1}{3}\)đáy AC
- Chung đường cao từ đỉnh K xuống đáy AC
Ta có:
SACK = \(\frac{1}{2}\)SABK
SAMK = \(\frac{1}{3}\)SACK
=> SAMK = \(\frac{1}{3}\)x \(\frac{1}{2}=\frac{1}{6}\)SABK
SABM = \(\frac{1}{3}\)SABC vì:
- Đáy AM = \(\frac{1}{3}\)đáy AC
- Chung đường cao từ đỉnh B xuống đáy AC
S ABM là:
180 : 3 = 60 (cm2)
Ta có:
SABM = SAMK + SABK
Vậy coi SAMK là 1 phần thì SABK là 6 phần như thế, SABM là : 6 + 1 = 7 (phần như vậy)
S ABK là:
60 : 7 x 6 = \(\frac{360}{7}\)(cm2)
Đáp số: a) 140cm2
b) \(\frac{360}{7}\)cm2