K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

\(x^2+y^2+z^2\)

\(=\frac{x^2+y^2}{2}+\frac{y^2+z^2}{2}+\frac{z^2+x^2}{2}\)

\(\ge xy+yz+zx\)

\(=\frac{xy+yz}{2}+\frac{yz+zx}{2}+\frac{zx+xy}{2}\)

\(\ge\frac{2\sqrt{xy^2z}}{2}+\frac{2\sqrt{xyz^2}}{2}+\frac{2\sqrt{x^2yz}}{2}\)

\(=\sqrt{xyz}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

NV
24 tháng 1 2022

\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)

\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)

\(=x+\sqrt{xyz}\)

Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)

\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)

4 tháng 9 2019

Pt tương đương:

\(2\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+3\)

Có: \(\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{3\cdot3\left(xyz\right)^2}=3\)

Đồng thời:

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z\le\sqrt{\left(x+y+z\right)^2}\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

Rồi cộng lại 

8 tháng 11 2019

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)

\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

3 tháng 2 2020

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

3 tháng 2 2020

Chị xem cách giải của em tại:

Câu hỏi của Nhã Doanh - Toán lớp 9 | Học trực tuyến

(https://h o c 2 4 .vn/hoi-dap/question/680384.html). Do không biết ad đã fix lỗi không gửi được link \(\text{H}\)(h.vn) nên em phải đính kèm link-_-

21 tháng 4 2017

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)

\(\Leftrightarrow x+y+z+\dfrac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x+y+z+\dfrac{9}{x+y+z}\ge2\sqrt{\dfrac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\) ( đpcm )

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\) ( đpcm )

Dấu " = " xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Đề bài sai với $x=0; y=z=1$

AH
Akai Haruma
Giáo viên
16 tháng 7 2019

Lời giải:

Ta thấy:

\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\)

\(\geq \frac{3}{4}(x+y)^2\) với mọi $x,y>0$
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}(x+y)\)

Hoàn toàn tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}}{2}(y+z); \sqrt{z^2+zx+x^2}\geq \frac{\sqrt{3}}{2}(x+z)\)

Cộng theo vế các BĐT trên và rút gọn:

\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$

23 tháng 5 2020

Với x, y, z dương, ta cần chứng minh: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(\ge\sqrt{3}\left(x+y+z\right)\)(1)

Phân tích: Trong BĐT (1), các biến được hoán vị vòng quanh và đẳng thức xảy ra khi x = y = z. Ta chọn được các số n, m để có bất đẳng thức \(\sqrt{x^2+xy+y^2}\ge nx+my\)(2)

Tương tự rồi cộng theo vế, ta được: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(\ge\left(m+n\right)\left(x+y+z\right)\)

Nhìn vào BĐT cần chứng minh ta thấy nếu tìm được cặp (n,m) thì lời giải thành công. Thế \(m=\sqrt{3}-n\)vào (2), ta có:

\(\sqrt{x^2+xy+y^2}\ge nx+\left(\sqrt{3}-n\right)y\)\(\Leftrightarrow\sqrt{\left(\frac{x}{y}\right)^2+\left(\frac{x}{y}\right)+1}\ge n.\left(\frac{x}{y}\right)+\left(\sqrt{3}-n\right)\)(3)

Đặt \(t=\frac{x}{y}\)BĐT (3) trở thành \(\sqrt{t^2+t+1}\ge nt+\sqrt{3}-n\)(4)

Do đẳng thức xảy ra khi x = y nên t = 1 ta phân tích (4) về nhân tử (t - 1)

Ta có: \(\left(4\right)\Leftrightarrow\left(\sqrt{t^2+t+1}-\sqrt{3}\right)-n\left(t-1\right)\ge0\)\(\Leftrightarrow\left(t-1\right)\left[\frac{t+2}{\sqrt{t^2+1+1}+\sqrt{3}}-n\right]\ge0\)

\(\Leftrightarrow n\le\frac{t+2}{\sqrt{t^2+t+1}+\sqrt{3}}\). Đồng nhất t = 1, ta được: \(n=\frac{\sqrt{3}}{2}\Rightarrow m=\frac{\sqrt{3}}{2}\)

Lúc đó ta có BĐT phụ: \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}x+\sqrt{3}y}{2}\)

Giải: Xét BĐT phụ \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}x+\sqrt{3}y}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(x-y\right)^2\ge0\)*đúng*

Tương tự cho các BĐT còn lại, ta được: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)

\(\ge\frac{\sqrt{3}\left(x+y+z\right)+\sqrt{3}\left(x+y+z\right)}{2}=\sqrt{3}\left(x+y+z\right)\)

Đẳng thức xảy ra khi x = y = z.

23 tháng 5 2020

Thật ra bài này không cần giãi kĩ như mình đây, bước đầu là bước nháp của mình, ghi luôn để các bạn hiểu tại sao lại có BĐT phụ thế kia

Nhưng bạn có thể làm 1 cách dễ hơn mà ko cần phải bỏ nhiều công sức nháp

Có: \(\sqrt{x^2+xy+y^2}=\sqrt{\left(x+y\right)^2-xy}\)

\(\ge\sqrt{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{4}}=\frac{\sqrt{3}\left(x+y\right)}{2}\)

Đến đây tương tự rồi cộng lại, Done.