K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Lời giải:

Để pt có 2 nghiệm phân biệt thì:

$\Delta'=4+m^2+5m>0\Leftrightarrow (m+1)(m+4)>0$

$\Leftrightarrow m>-1$ hoặc $m< -4(*)$

Áp dụng định lý Vi-et, với $x_1,x_2$ là nghiệm của pt thì: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+5m)\end{matrix}\right.\)

Khi đó:

\(|x_1-x_2|=4\)

\(\Leftrightarrow (x_1-x_2)^2=16\)

\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16\)

\(\Leftrightarrow (-4)^2+4(m^2+5m)=16\)

\(\Leftrightarrow m^2+5m+4=4\)

\(\Leftrightarrow m^2+5m=0\Leftrightarrow m(m+5)=0\Rightarrow m=0\) hoặc $m=-5$. Kết hợp với $(*)$ ta thấy 2 giá trị này đều thỏa mãn.

Vậy........

NV
24 tháng 3 2021

\(ac=-6< 0\Rightarrow\) phương trình đã cho luôn luôn có 2 nghiệm pb (trái dấu)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-6\end{matrix}\right.\)

Thế vào đề bài:

\(m-2-3\left(-6\right)=0\)

\(\Leftrightarrow m+16=0\Leftrightarrow m=-16\)

24 tháng 3 2021

Thầy phân tích cho e kĩ hơn ở p [ac=-6] đc ko ạ. Tại sao mk ko tính Δ= [m^2-4m+28 kết quả tính đc] mà p làm như thế ạ

bạn xem lại biểu thức trong đề bài 

29 tháng 5 2021

a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`

`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.

b) Viet: `x_1+x_2=-2m+4`

`x_1x_2=m^2-4m`

`3/(x_1) + x_2=3/(x_2)+x_1`

`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`

`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`

`<=>(x_1-x_2).(3+x_1x_2)=0`

`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`

`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`

`<=>  4.(3+m^2-4m)=0`

`<=> m^2-4m+3=0`

`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy `m \in {1;3}`.

3 tháng 8 2017

Để phương trình có 2 nghiệm \(x_1;x_2\)thì \(\Delta'=\left(m+2\right)^2-m^2-7>0\Rightarrow m^2+4m+4-m^2-7>0\)

\(\Rightarrow4m-3>0\Rightarrow m>\frac{3}{4}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m+4\\x_1.x_2=m^2+7\end{cases}}\)

Yêu cầu bài toán \(\Leftrightarrow m^2+7=4+2\left(2m+4\right)\Leftrightarrow m^2-4m-5=0\)

\(\Leftrightarrow\left(m+1\right)\left(m-5\right)=0\Leftrightarrow\orbr{\begin{cases}m=-1\left(l\right)\\m=5\left(tm\right)\end{cases}}\)

Vậy \(m=5\)

12 tháng 2 2019

viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn